{"title":"教学:科学实践中的置信度、预测和公差区间:二元变量教程。","authors":"Sonja Hartnack, Malgorzata Roos","doi":"10.1186/s12982-021-00108-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>One of the emerging themes in epidemiology is the use of interval estimates. Currently, three interval estimates for confidence (CI), prediction (PI), and tolerance (TI) are at a researcher's disposal and are accessible within the open access framework in R. These three types of statistical intervals serve different purposes. Confidence intervals are designed to describe a parameter with some uncertainty due to sampling errors. Prediction intervals aim to predict future observation(s), including some uncertainty present in the actual and future samples. Tolerance intervals are constructed to capture a specified proportion of a population with a defined confidence. It is well known that interval estimates support a greater knowledge gain than point estimates. Thus, a good understanding and the use of CI, PI, and TI underlie good statistical practice. While CIs are taught in introductory statistical classes, PIs and TIs are less familiar.</p><p><strong>Results: </strong>In this paper, we provide a concise tutorial on two-sided CI, PI and TI for binary variables. This hands-on tutorial is based on our teaching materials. It contains an overview of the meaning and applicability from both a classical and a Bayesian perspective. Based on a worked-out example from veterinary medicine, we provide guidance and code that can be directly applied in R.</p><p><strong>Conclusions: </strong>This tutorial can be used by others for teaching, either in a class or for self-instruction of students and senior researchers.</p>","PeriodicalId":39896,"journal":{"name":"Emerging Themes in Epidemiology","volume":"18 1","pages":"17"},"PeriodicalIF":3.6000,"publicationDate":"2021-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8645111/pdf/","citationCount":"0","resultStr":"{\"title\":\"Teaching: confidence, prediction and tolerance intervals in scientific practice: a tutorial on binary variables.\",\"authors\":\"Sonja Hartnack, Malgorzata Roos\",\"doi\":\"10.1186/s12982-021-00108-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>One of the emerging themes in epidemiology is the use of interval estimates. Currently, three interval estimates for confidence (CI), prediction (PI), and tolerance (TI) are at a researcher's disposal and are accessible within the open access framework in R. These three types of statistical intervals serve different purposes. Confidence intervals are designed to describe a parameter with some uncertainty due to sampling errors. Prediction intervals aim to predict future observation(s), including some uncertainty present in the actual and future samples. Tolerance intervals are constructed to capture a specified proportion of a population with a defined confidence. It is well known that interval estimates support a greater knowledge gain than point estimates. Thus, a good understanding and the use of CI, PI, and TI underlie good statistical practice. While CIs are taught in introductory statistical classes, PIs and TIs are less familiar.</p><p><strong>Results: </strong>In this paper, we provide a concise tutorial on two-sided CI, PI and TI for binary variables. This hands-on tutorial is based on our teaching materials. It contains an overview of the meaning and applicability from both a classical and a Bayesian perspective. Based on a worked-out example from veterinary medicine, we provide guidance and code that can be directly applied in R.</p><p><strong>Conclusions: </strong>This tutorial can be used by others for teaching, either in a class or for self-instruction of students and senior researchers.</p>\",\"PeriodicalId\":39896,\"journal\":{\"name\":\"Emerging Themes in Epidemiology\",\"volume\":\"18 1\",\"pages\":\"17\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2021-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8645111/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Themes in Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12982-021-00108-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Themes in Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12982-021-00108-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Teaching: confidence, prediction and tolerance intervals in scientific practice: a tutorial on binary variables.
Background: One of the emerging themes in epidemiology is the use of interval estimates. Currently, three interval estimates for confidence (CI), prediction (PI), and tolerance (TI) are at a researcher's disposal and are accessible within the open access framework in R. These three types of statistical intervals serve different purposes. Confidence intervals are designed to describe a parameter with some uncertainty due to sampling errors. Prediction intervals aim to predict future observation(s), including some uncertainty present in the actual and future samples. Tolerance intervals are constructed to capture a specified proportion of a population with a defined confidence. It is well known that interval estimates support a greater knowledge gain than point estimates. Thus, a good understanding and the use of CI, PI, and TI underlie good statistical practice. While CIs are taught in introductory statistical classes, PIs and TIs are less familiar.
Results: In this paper, we provide a concise tutorial on two-sided CI, PI and TI for binary variables. This hands-on tutorial is based on our teaching materials. It contains an overview of the meaning and applicability from both a classical and a Bayesian perspective. Based on a worked-out example from veterinary medicine, we provide guidance and code that can be directly applied in R.
Conclusions: This tutorial can be used by others for teaching, either in a class or for self-instruction of students and senior researchers.
期刊介绍:
Emerging Themes in Epidemiology is an open access, peer-reviewed, online journal that aims to promote debate and discussion on practical and theoretical aspects of epidemiology. Combining statistical approaches with an understanding of the biology of disease, epidemiologists seek to elucidate the social, environmental and host factors related to adverse health outcomes. Although research findings from epidemiologic studies abound in traditional public health journals, little publication space is devoted to discussion of the practical and theoretical concepts that underpin them. Because of its immediate impact on public health, an openly accessible forum is needed in the field of epidemiology to foster such discussion.