{"title":"滑膜小提琴通过降低NLRP3抑制<s:1> ller细胞的炎性细胞因子分泌。","authors":"Jiayu Zhang, Chengwei Chen, Liang Wu, Qiang Wang, Jiawei Chen, Sifang Zhang, Zhenguo Chen","doi":"10.1530/JME-21-0123","DOIUrl":null,"url":null,"abstract":"<p><p>The pro-inflammatory cytokines secreted by Müller cells aggregate retinal cell loss and vascularization in diabetic retinopathy (DR). The deubiquitinase BRCA1-BRCA2-containing complex subunit 3 (BRCC3)-mediated nucleotide-binding domain and leucine-rich repeat receptor containing a pyrin domain 3 (NLRP3) inflammasome activation participate in this progress. This study aims to clarify whether the E3 ubiquitin ligase synoviolin (SYVN1) relieves DR via regulating the BRCC3/NLRP3 axis. The DR model was established using streptozotocin-induced mice. Immunofluorescence staining with anti-CD31, anti-glutamine synthetase, and anti-vimentin was performed to identify DR and Müller cells. Levels of pro-inflammatory cytokines, including interleukin-1β, tumor necrosis factor-α, IL-6, and IL-18, in murine serum and Müller cell supernatants were determined. Co-immunoprecipitation (Co-IP) and ubiquitination assays were used to clarify the interactions among SYVN1, BRCC3, and NLRP3. SYVN1 was reduced and BRCC3 was increased in DR retina and high glucose (HG)-induced Müller cells. Overexpressing 1 promoted the ubiquitination and degradation of BRCC3 and reduced the secretion of proinflammatory cytokines in HG-induced Müller cells. The simultaneous overexpression of 1 and Brcc3 restored the reduction of pro-inflammatory cytokines caused by the overexpression of 1 alone. Co-IP experiments confirmed the interaction between BRCC3 and NLRP3. SYVN1-mediated BRCC3 downregulation promoted NLRP3 ubiquitination and reduced pro-inflammatory cytokine secretion. 1 overexpression reduced retinal vascularization and inflammatory cytokine secretion in DR mice. SYVN1 has a protective effect on DR, whose molecular mechanisms are partly through SYVN1-mediated ubiquitination of BRCC3 and the subsequent downregulation of NLRP3.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":"68 2","pages":"125-136"},"PeriodicalIF":3.6000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Synoviolin inhibits the inflammatory cytokine secretion of Müller cells by reducing NLRP3.\",\"authors\":\"Jiayu Zhang, Chengwei Chen, Liang Wu, Qiang Wang, Jiawei Chen, Sifang Zhang, Zhenguo Chen\",\"doi\":\"10.1530/JME-21-0123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The pro-inflammatory cytokines secreted by Müller cells aggregate retinal cell loss and vascularization in diabetic retinopathy (DR). The deubiquitinase BRCA1-BRCA2-containing complex subunit 3 (BRCC3)-mediated nucleotide-binding domain and leucine-rich repeat receptor containing a pyrin domain 3 (NLRP3) inflammasome activation participate in this progress. This study aims to clarify whether the E3 ubiquitin ligase synoviolin (SYVN1) relieves DR via regulating the BRCC3/NLRP3 axis. The DR model was established using streptozotocin-induced mice. Immunofluorescence staining with anti-CD31, anti-glutamine synthetase, and anti-vimentin was performed to identify DR and Müller cells. Levels of pro-inflammatory cytokines, including interleukin-1β, tumor necrosis factor-α, IL-6, and IL-18, in murine serum and Müller cell supernatants were determined. Co-immunoprecipitation (Co-IP) and ubiquitination assays were used to clarify the interactions among SYVN1, BRCC3, and NLRP3. SYVN1 was reduced and BRCC3 was increased in DR retina and high glucose (HG)-induced Müller cells. Overexpressing 1 promoted the ubiquitination and degradation of BRCC3 and reduced the secretion of proinflammatory cytokines in HG-induced Müller cells. The simultaneous overexpression of 1 and Brcc3 restored the reduction of pro-inflammatory cytokines caused by the overexpression of 1 alone. Co-IP experiments confirmed the interaction between BRCC3 and NLRP3. SYVN1-mediated BRCC3 downregulation promoted NLRP3 ubiquitination and reduced pro-inflammatory cytokine secretion. 1 overexpression reduced retinal vascularization and inflammatory cytokine secretion in DR mice. SYVN1 has a protective effect on DR, whose molecular mechanisms are partly through SYVN1-mediated ubiquitination of BRCC3 and the subsequent downregulation of NLRP3.</p>\",\"PeriodicalId\":16570,\"journal\":{\"name\":\"Journal of molecular endocrinology\",\"volume\":\"68 2\",\"pages\":\"125-136\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1530/JME-21-0123\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JME-21-0123","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Synoviolin inhibits the inflammatory cytokine secretion of Müller cells by reducing NLRP3.
The pro-inflammatory cytokines secreted by Müller cells aggregate retinal cell loss and vascularization in diabetic retinopathy (DR). The deubiquitinase BRCA1-BRCA2-containing complex subunit 3 (BRCC3)-mediated nucleotide-binding domain and leucine-rich repeat receptor containing a pyrin domain 3 (NLRP3) inflammasome activation participate in this progress. This study aims to clarify whether the E3 ubiquitin ligase synoviolin (SYVN1) relieves DR via regulating the BRCC3/NLRP3 axis. The DR model was established using streptozotocin-induced mice. Immunofluorescence staining with anti-CD31, anti-glutamine synthetase, and anti-vimentin was performed to identify DR and Müller cells. Levels of pro-inflammatory cytokines, including interleukin-1β, tumor necrosis factor-α, IL-6, and IL-18, in murine serum and Müller cell supernatants were determined. Co-immunoprecipitation (Co-IP) and ubiquitination assays were used to clarify the interactions among SYVN1, BRCC3, and NLRP3. SYVN1 was reduced and BRCC3 was increased in DR retina and high glucose (HG)-induced Müller cells. Overexpressing 1 promoted the ubiquitination and degradation of BRCC3 and reduced the secretion of proinflammatory cytokines in HG-induced Müller cells. The simultaneous overexpression of 1 and Brcc3 restored the reduction of pro-inflammatory cytokines caused by the overexpression of 1 alone. Co-IP experiments confirmed the interaction between BRCC3 and NLRP3. SYVN1-mediated BRCC3 downregulation promoted NLRP3 ubiquitination and reduced pro-inflammatory cytokine secretion. 1 overexpression reduced retinal vascularization and inflammatory cytokine secretion in DR mice. SYVN1 has a protective effect on DR, whose molecular mechanisms are partly through SYVN1-mediated ubiquitination of BRCC3 and the subsequent downregulation of NLRP3.
期刊介绍:
The Journal of Molecular Endocrinology is an official journal of the Society for Endocrinology and is endorsed by the European Society of Endocrinology and the Endocrine Society of Australia.
Journal of Molecular Endocrinology is a leading global journal that publishes original research articles and reviews. The journal focuses on molecular and cellular mechanisms in endocrinology, including: gene regulation, cell biology, signalling, mutations, transgenics, hormone-dependant cancers, nuclear receptors, and omics. Basic and pathophysiological studies at the molecule and cell level are considered, as well as human sample studies where this is the experimental model of choice. Technique studies including CRISPR or gene editing are also encouraged.