Yan Zhang, Jie Zhang, Min Tao, Jian Shu, Degang Zhu
{"title":"使用日历和气象信息预测急诊科的患者到达情况","authors":"Yan Zhang, Jie Zhang, Min Tao, Jian Shu, Degang Zhu","doi":"10.1007/s10489-021-03085-9","DOIUrl":null,"url":null,"abstract":"<div><p>Overcrowding in emergency departments (EDs) is a serious problem in many countries. Accurate ED patient arrival forecasts can serve as a management baseline to better allocate ED personnel and medical resources. We combined calendar and meteorological information and used ten modern machine learning methods to forecast patient arrivals. For daily patient arrival forecasting, two feature selection methods are proposed. One uses kernel principal component analysis(KPCA) to reduce the dimensionality of all of the features, and the other is to use the maximal information coefficient(MIC) method to select the features related to the daily data first and then perform KPCA dimensionality reduction. The current study focuses on a public hospital ED in Hefei, China. We used the data November 1, 2019 to August 31, 2020 for model training; and patient arrival data September 1, 2020 to November 31, 2020 for model validation. The results show that for hourly patient arrival forecasting, each machine learning model has better forecasting results than the traditional autoRegressive integrated moving average (ARIMA) model, especially long short-term memory (LSTM) model. For daily patient arrival forecasting, the feature selection method based on MIC-KPCA has a better forecasting effect, and the simpler models are better than the ensemble models. The method we proposed could be used for better planning of ED personnel resources.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"52 10","pages":"11232 - 11243"},"PeriodicalIF":3.4000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10489-021-03085-9.pdf","citationCount":"12","resultStr":"{\"title\":\"Forecasting patient arrivals at emergency department using calendar and meteorological information\",\"authors\":\"Yan Zhang, Jie Zhang, Min Tao, Jian Shu, Degang Zhu\",\"doi\":\"10.1007/s10489-021-03085-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Overcrowding in emergency departments (EDs) is a serious problem in many countries. Accurate ED patient arrival forecasts can serve as a management baseline to better allocate ED personnel and medical resources. We combined calendar and meteorological information and used ten modern machine learning methods to forecast patient arrivals. For daily patient arrival forecasting, two feature selection methods are proposed. One uses kernel principal component analysis(KPCA) to reduce the dimensionality of all of the features, and the other is to use the maximal information coefficient(MIC) method to select the features related to the daily data first and then perform KPCA dimensionality reduction. The current study focuses on a public hospital ED in Hefei, China. We used the data November 1, 2019 to August 31, 2020 for model training; and patient arrival data September 1, 2020 to November 31, 2020 for model validation. The results show that for hourly patient arrival forecasting, each machine learning model has better forecasting results than the traditional autoRegressive integrated moving average (ARIMA) model, especially long short-term memory (LSTM) model. For daily patient arrival forecasting, the feature selection method based on MIC-KPCA has a better forecasting effect, and the simpler models are better than the ensemble models. The method we proposed could be used for better planning of ED personnel resources.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"52 10\",\"pages\":\"11232 - 11243\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10489-021-03085-9.pdf\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-021-03085-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-021-03085-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Forecasting patient arrivals at emergency department using calendar and meteorological information
Overcrowding in emergency departments (EDs) is a serious problem in many countries. Accurate ED patient arrival forecasts can serve as a management baseline to better allocate ED personnel and medical resources. We combined calendar and meteorological information and used ten modern machine learning methods to forecast patient arrivals. For daily patient arrival forecasting, two feature selection methods are proposed. One uses kernel principal component analysis(KPCA) to reduce the dimensionality of all of the features, and the other is to use the maximal information coefficient(MIC) method to select the features related to the daily data first and then perform KPCA dimensionality reduction. The current study focuses on a public hospital ED in Hefei, China. We used the data November 1, 2019 to August 31, 2020 for model training; and patient arrival data September 1, 2020 to November 31, 2020 for model validation. The results show that for hourly patient arrival forecasting, each machine learning model has better forecasting results than the traditional autoRegressive integrated moving average (ARIMA) model, especially long short-term memory (LSTM) model. For daily patient arrival forecasting, the feature selection method based on MIC-KPCA has a better forecasting effect, and the simpler models are better than the ensemble models. The method we proposed could be used for better planning of ED personnel resources.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.