{"title":"在稳态和时间分辨电光光谱学上更进一步:一个定制的简单、紧凑、低成本、基于光纤的干涉仪系统的演示。","authors":"Giovanni Pica, Daniele Bajoni, Giulia Grancini","doi":"10.1063/4.0000134","DOIUrl":null,"url":null,"abstract":"<p><p>Electro-optical spectroscopy is nowadays a routine approach for the analysis of light induced properties and dynamical processes in matter, whose understanding is particularly crucial for the intelligent design of novel synthetic materials and the engineering and optimization of high-impact optoelectronic devices. Currently, within this field, it is the common choice to rely on multiple commercial setups, often costly and complex, which can rarely combine multiple functions at the same time with the required sensitivity, resolution, and spectral tunability (in both excitation and detection). Here, we present an innovative, compact, and low-cost system based on \"three in one\" components for the simultaneous electro-optical material and device characterization. It relies on compact fiber-coupled Fourier transform spectroscopy, the core of the system, enabling a fast spectral analysis to acquire simultaneously wavelength and time resolved photoluminescence (PL) maps (as a function of the time and wavelength), PL quantum yield, and electroluminescence signal. Our system bypasses conventional ones, proposing a new solution for a compact, low-cost, and user-friendly tool, while maintaining high levels of resolution and sensitivity.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759798/pdf/","citationCount":"3","resultStr":"{\"title\":\"A step beyond in steady-state and time-resolved electro-optical spectroscopy: Demonstration of a customized simple, compact, low-cost, fiber-based interferometer system.\",\"authors\":\"Giovanni Pica, Daniele Bajoni, Giulia Grancini\",\"doi\":\"10.1063/4.0000134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electro-optical spectroscopy is nowadays a routine approach for the analysis of light induced properties and dynamical processes in matter, whose understanding is particularly crucial for the intelligent design of novel synthetic materials and the engineering and optimization of high-impact optoelectronic devices. Currently, within this field, it is the common choice to rely on multiple commercial setups, often costly and complex, which can rarely combine multiple functions at the same time with the required sensitivity, resolution, and spectral tunability (in both excitation and detection). Here, we present an innovative, compact, and low-cost system based on \\\"three in one\\\" components for the simultaneous electro-optical material and device characterization. It relies on compact fiber-coupled Fourier transform spectroscopy, the core of the system, enabling a fast spectral analysis to acquire simultaneously wavelength and time resolved photoluminescence (PL) maps (as a function of the time and wavelength), PL quantum yield, and electroluminescence signal. Our system bypasses conventional ones, proposing a new solution for a compact, low-cost, and user-friendly tool, while maintaining high levels of resolution and sensitivity.</p>\",\"PeriodicalId\":48683,\"journal\":{\"name\":\"Structural Dynamics-Us\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759798/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Dynamics-Us\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/4.0000134\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000134","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A step beyond in steady-state and time-resolved electro-optical spectroscopy: Demonstration of a customized simple, compact, low-cost, fiber-based interferometer system.
Electro-optical spectroscopy is nowadays a routine approach for the analysis of light induced properties and dynamical processes in matter, whose understanding is particularly crucial for the intelligent design of novel synthetic materials and the engineering and optimization of high-impact optoelectronic devices. Currently, within this field, it is the common choice to rely on multiple commercial setups, often costly and complex, which can rarely combine multiple functions at the same time with the required sensitivity, resolution, and spectral tunability (in both excitation and detection). Here, we present an innovative, compact, and low-cost system based on "three in one" components for the simultaneous electro-optical material and device characterization. It relies on compact fiber-coupled Fourier transform spectroscopy, the core of the system, enabling a fast spectral analysis to acquire simultaneously wavelength and time resolved photoluminescence (PL) maps (as a function of the time and wavelength), PL quantum yield, and electroluminescence signal. Our system bypasses conventional ones, proposing a new solution for a compact, low-cost, and user-friendly tool, while maintaining high levels of resolution and sensitivity.
Structural Dynamics-UsCHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍:
Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods.
The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as:
Time-resolved X-ray and electron diffraction and scattering,
Coherent diffractive imaging,
Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.),
Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy,
Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.),
Multidimensional spectroscopies in the infrared, the visible and the ultraviolet,
Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains,
Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals.
These new methods are enabled by new instrumentation, such as:
X-ray free electron lasers, which provide flux, coherence, and time resolution,
New sources of ultrashort electron pulses,
New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources,
New sources of ultrashort infrared and terahertz (THz) radiation,
New detectors for X-rays and electrons,
New sample handling and delivery schemes,
New computational capabilities.