视频的非视觉无障碍评估。

Ali Selman Aydin, Yu-Jung Ko, Utku Uckun, I V Ramakrishnan, Vikas Ashok
{"title":"视频的非视觉无障碍评估。","authors":"Ali Selman Aydin,&nbsp;Yu-Jung Ko,&nbsp;Utku Uckun,&nbsp;I V Ramakrishnan,&nbsp;Vikas Ashok","doi":"10.1145/3459637.3482457","DOIUrl":null,"url":null,"abstract":"<p><p>Video accessibility is crucial for blind screen-reader users as online videos are increasingly playing an essential role in education, employment, and entertainment. While there exist quite a few techniques and guidelines that focus on creating accessible videos, there is a dearth of research that attempts to characterize the accessibility of existing videos. Therefore in this paper, we define and investigate a diverse set of video and audio-based accessibility features in an effort to characterize accessible and inaccessible videos. As a ground truth for our investigation, we built a custom dataset of 600 videos, in which each video was assigned an accessibility <i>score</i> based on the number of its wins in a Swiss-system tournament, where human annotators performed pairwise accessibility comparisons of videos. In contrast to existing accessibility research where the assessments are typically done by blind users, we recruited sighted users for our effort, since videos comprise a special case where sight could be required to better judge if any particular scene in a video is presently accessible or not. Subsequently, by examining the extent of association between the accessibility features and the accessibility scores, we could determine the features that signifcantly (positively or negatively) impact video accessibility and therefore serve as good indicators for assessing the accessibility of videos. Using the custom dataset, we also trained machine learning models that leveraged our handcrafted features to either classify an arbitrary video as accessible/inaccessible or predict an accessibility score for the video. Evaluation of our models yielded an <i>F</i> <sub>1</sub> score of 0.675 for binary classification and a mean absolute error of 0.53 for score prediction, thereby demonstrating their potential in video accessibility assessment while also illuminating their current limitations and the need for further research in this area.</p>","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"2021 ","pages":"58-67"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8845074/pdf/nihms-1777380.pdf","citationCount":"1","resultStr":"{\"title\":\"Non-Visual Accessibility Assessment of Videos.\",\"authors\":\"Ali Selman Aydin,&nbsp;Yu-Jung Ko,&nbsp;Utku Uckun,&nbsp;I V Ramakrishnan,&nbsp;Vikas Ashok\",\"doi\":\"10.1145/3459637.3482457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Video accessibility is crucial for blind screen-reader users as online videos are increasingly playing an essential role in education, employment, and entertainment. While there exist quite a few techniques and guidelines that focus on creating accessible videos, there is a dearth of research that attempts to characterize the accessibility of existing videos. Therefore in this paper, we define and investigate a diverse set of video and audio-based accessibility features in an effort to characterize accessible and inaccessible videos. As a ground truth for our investigation, we built a custom dataset of 600 videos, in which each video was assigned an accessibility <i>score</i> based on the number of its wins in a Swiss-system tournament, where human annotators performed pairwise accessibility comparisons of videos. In contrast to existing accessibility research where the assessments are typically done by blind users, we recruited sighted users for our effort, since videos comprise a special case where sight could be required to better judge if any particular scene in a video is presently accessible or not. Subsequently, by examining the extent of association between the accessibility features and the accessibility scores, we could determine the features that signifcantly (positively or negatively) impact video accessibility and therefore serve as good indicators for assessing the accessibility of videos. Using the custom dataset, we also trained machine learning models that leveraged our handcrafted features to either classify an arbitrary video as accessible/inaccessible or predict an accessibility score for the video. Evaluation of our models yielded an <i>F</i> <sub>1</sub> score of 0.675 for binary classification and a mean absolute error of 0.53 for score prediction, thereby demonstrating their potential in video accessibility assessment while also illuminating their current limitations and the need for further research in this area.</p>\",\"PeriodicalId\":74507,\"journal\":{\"name\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"volume\":\"2021 \",\"pages\":\"58-67\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8845074/pdf/nihms-1777380.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3459637.3482457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/10/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着在线视频在教育、就业和娱乐中发挥越来越重要的作用,视频的可访问性对盲人屏幕阅读器用户来说至关重要。虽然有相当多的技术和指导方针专注于创建可访问的视频,但缺乏试图描述现有视频可访问性的研究。因此,在本文中,我们定义和研究了一组不同的基于视频和音频的可访问性特征,以努力表征可访问和不可访问的视频。作为我们调查的基本事实,我们建立了一个包含600个视频的自定义数据集,其中每个视频根据其在瑞士系统锦标赛中的获胜次数被分配一个可访问性分数,其中人类注释者对视频进行两两可访问性比较。现有的可访问性研究通常由盲人用户进行评估,与此相反,我们招募了有视力的用户,因为视频包含一个特殊情况,可以要求视力更好地判断视频中的任何特定场景目前是否可访问。随后,通过检查可访问性特征与可访问性得分之间的关联程度,我们可以确定显著(积极或消极)影响视频可访问性的特征,从而作为评估视频可访问性的良好指标。使用自定义数据集,我们还训练了机器学习模型,该模型利用我们手工制作的特征将任意视频分类为可访问/不可访问或预测视频的可访问性分数。对我们的模型进行评估,二元分类的f1得分为0.675,分数预测的平均绝对误差为0.53,从而显示了它们在视频可访问性评估中的潜力,同时也说明了它们目前的局限性以及在该领域进一步研究的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Non-Visual Accessibility Assessment of Videos.

Non-Visual Accessibility Assessment of Videos.

Non-Visual Accessibility Assessment of Videos.

Non-Visual Accessibility Assessment of Videos.

Video accessibility is crucial for blind screen-reader users as online videos are increasingly playing an essential role in education, employment, and entertainment. While there exist quite a few techniques and guidelines that focus on creating accessible videos, there is a dearth of research that attempts to characterize the accessibility of existing videos. Therefore in this paper, we define and investigate a diverse set of video and audio-based accessibility features in an effort to characterize accessible and inaccessible videos. As a ground truth for our investigation, we built a custom dataset of 600 videos, in which each video was assigned an accessibility score based on the number of its wins in a Swiss-system tournament, where human annotators performed pairwise accessibility comparisons of videos. In contrast to existing accessibility research where the assessments are typically done by blind users, we recruited sighted users for our effort, since videos comprise a special case where sight could be required to better judge if any particular scene in a video is presently accessible or not. Subsequently, by examining the extent of association between the accessibility features and the accessibility scores, we could determine the features that signifcantly (positively or negatively) impact video accessibility and therefore serve as good indicators for assessing the accessibility of videos. Using the custom dataset, we also trained machine learning models that leveraged our handcrafted features to either classify an arbitrary video as accessible/inaccessible or predict an accessibility score for the video. Evaluation of our models yielded an F 1 score of 0.675 for binary classification and a mean absolute error of 0.53 for score prediction, thereby demonstrating their potential in video accessibility assessment while also illuminating their current limitations and the need for further research in this area.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信