溶酶体生物发生图谱揭示了酵母空泡蛋白靶向途径的载货谱。

The Journal of Cell Biology Pub Date : 2022-04-04 Epub Date: 2022-02-17 DOI:10.1083/jcb.202107148
Sebastian Eising, Bianca Esch, Mike Wälte, Prado Vargas Duarte, Stefan Walter, Christian Ungermann, Maria Bohnert, Florian Fröhlich
{"title":"溶酶体生物发生图谱揭示了酵母空泡蛋白靶向途径的载货谱。","authors":"Sebastian Eising,&nbsp;Bianca Esch,&nbsp;Mike Wälte,&nbsp;Prado Vargas Duarte,&nbsp;Stefan Walter,&nbsp;Christian Ungermann,&nbsp;Maria Bohnert,&nbsp;Florian Fröhlich","doi":"10.1083/jcb.202107148","DOIUrl":null,"url":null,"abstract":"<p><p>The lysosome is the major catabolic organelle in the cell that has been established as a key metabolic signaling center. Mutations in many lysosomal proteins have catastrophic effects and cause neurodegeneration, cancer, and age-related diseases. The vacuole is the lysosomal analog of Saccharomyces cerevisiae that harbors many evolutionary conserved proteins. Proteins reach vacuoles via the Vps10-dependent endosomal vacuolar protein sorting pathway, via the alkaline phosphatase (ALP or AP-3) pathway, and via the cytosol-to-vacuole transport (CVT) pathway. A systematic understanding of the cargo spectrum of each pathway is completely lacking. Here, we use quantitative proteomics of purified vacuoles to generate the yeast lysosomal biogenesis map. This dataset harbors information on the cargo-receptor relationship of almost all vacuolar proteins. We map binding motifs of Vps10 and the AP-3 complex and identify a novel cargo of the CVT pathway under nutrient-rich conditions. Our data show how organelle purification and quantitative proteomics can uncover fundamental insights into organelle biogenesis.</p>","PeriodicalId":343306,"journal":{"name":"The Journal of Cell Biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/33/4f/JCB_202107148.PMC8859911.pdf","citationCount":"7","resultStr":"{\"title\":\"A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways.\",\"authors\":\"Sebastian Eising,&nbsp;Bianca Esch,&nbsp;Mike Wälte,&nbsp;Prado Vargas Duarte,&nbsp;Stefan Walter,&nbsp;Christian Ungermann,&nbsp;Maria Bohnert,&nbsp;Florian Fröhlich\",\"doi\":\"10.1083/jcb.202107148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The lysosome is the major catabolic organelle in the cell that has been established as a key metabolic signaling center. Mutations in many lysosomal proteins have catastrophic effects and cause neurodegeneration, cancer, and age-related diseases. The vacuole is the lysosomal analog of Saccharomyces cerevisiae that harbors many evolutionary conserved proteins. Proteins reach vacuoles via the Vps10-dependent endosomal vacuolar protein sorting pathway, via the alkaline phosphatase (ALP or AP-3) pathway, and via the cytosol-to-vacuole transport (CVT) pathway. A systematic understanding of the cargo spectrum of each pathway is completely lacking. Here, we use quantitative proteomics of purified vacuoles to generate the yeast lysosomal biogenesis map. This dataset harbors information on the cargo-receptor relationship of almost all vacuolar proteins. We map binding motifs of Vps10 and the AP-3 complex and identify a novel cargo of the CVT pathway under nutrient-rich conditions. Our data show how organelle purification and quantitative proteomics can uncover fundamental insights into organelle biogenesis.</p>\",\"PeriodicalId\":343306,\"journal\":{\"name\":\"The Journal of Cell Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/33/4f/JCB_202107148.PMC8859911.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1083/jcb.202107148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1083/jcb.202107148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

溶酶体是细胞中主要的分解代谢细胞器,已被确立为关键的代谢信号中心。许多溶酶体蛋白的突变具有灾难性的影响,并导致神经变性、癌症和与年龄有关的疾病。液泡是酿酒酵母的溶酶体类似物,含有许多进化上保守的蛋白质。蛋白质通过依赖vps10的内体空泡蛋白分选途径、碱性磷酸酶(ALP或AP-3)途径和细胞质-液泡转运(CVT)途径到达液泡。对每个路径的货物谱的系统理解是完全缺乏的。在这里,我们使用纯化液泡的定量蛋白质组学来生成酵母溶酶体生物发生图谱。这个数据集包含了几乎所有液泡蛋白的货物-受体关系的信息。我们绘制了Vps10和AP-3复合物的结合基序,并在营养丰富的条件下鉴定了CVT途径的新货物。我们的数据显示细胞器纯化和定量蛋白质组学可以揭示细胞器生物发生的基本见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways.

A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways.

A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways.

A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways.

The lysosome is the major catabolic organelle in the cell that has been established as a key metabolic signaling center. Mutations in many lysosomal proteins have catastrophic effects and cause neurodegeneration, cancer, and age-related diseases. The vacuole is the lysosomal analog of Saccharomyces cerevisiae that harbors many evolutionary conserved proteins. Proteins reach vacuoles via the Vps10-dependent endosomal vacuolar protein sorting pathway, via the alkaline phosphatase (ALP or AP-3) pathway, and via the cytosol-to-vacuole transport (CVT) pathway. A systematic understanding of the cargo spectrum of each pathway is completely lacking. Here, we use quantitative proteomics of purified vacuoles to generate the yeast lysosomal biogenesis map. This dataset harbors information on the cargo-receptor relationship of almost all vacuolar proteins. We map binding motifs of Vps10 and the AP-3 complex and identify a novel cargo of the CVT pathway under nutrient-rich conditions. Our data show how organelle purification and quantitative proteomics can uncover fundamental insights into organelle biogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信