Amira Al-Aamri, Kamal Taha, Maher Maalouf, Andrzej Kudlicki, Dirar Homouz
{"title":"用核逻辑回归推断酵母基因关联网络的因果关系。","authors":"Amira Al-Aamri, Kamal Taha, Maher Maalouf, Andrzej Kudlicki, Dirar Homouz","doi":"10.1177/1176934320920310","DOIUrl":null,"url":null,"abstract":"<p><p>Computational prediction of gene-gene associations is one of the productive directions in the study of bioinformatics. Many tools are developed to infer the relation between genes using different biological data sources. The association of a pair of genes deduced from the analysis of biological data becomes meaningful when it reflects the directionality and the type of reaction between genes. In this work, we follow another method to construct a causal gene co-expression network while identifying transcription factors in each pair of genes using microarray expression data. We adopt a machine learning technique based on a logistic regression model to tackle the sparsity of the network and to improve the quality of the prediction accuracy. The proposed system classifies each pair of genes into either connected or nonconnected class using the data of the correlation between these genes in the whole <i>Saccharomyces cerevisiae</i> genome. The accuracy of the classification model in predicting related genes was evaluated using several data sets for the yeast regulatory network. Our system achieves high performance in terms of several statistical measures.</p>","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"16 ","pages":"1176934320920310"},"PeriodicalIF":1.7000,"publicationDate":"2020-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1176934320920310","citationCount":"3","resultStr":"{\"title\":\"Inferring Causation in Yeast Gene Association Networks With Kernel Logistic Regression.\",\"authors\":\"Amira Al-Aamri, Kamal Taha, Maher Maalouf, Andrzej Kudlicki, Dirar Homouz\",\"doi\":\"10.1177/1176934320920310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Computational prediction of gene-gene associations is one of the productive directions in the study of bioinformatics. Many tools are developed to infer the relation between genes using different biological data sources. The association of a pair of genes deduced from the analysis of biological data becomes meaningful when it reflects the directionality and the type of reaction between genes. In this work, we follow another method to construct a causal gene co-expression network while identifying transcription factors in each pair of genes using microarray expression data. We adopt a machine learning technique based on a logistic regression model to tackle the sparsity of the network and to improve the quality of the prediction accuracy. The proposed system classifies each pair of genes into either connected or nonconnected class using the data of the correlation between these genes in the whole <i>Saccharomyces cerevisiae</i> genome. The accuracy of the classification model in predicting related genes was evaluated using several data sets for the yeast regulatory network. Our system achieves high performance in terms of several statistical measures.</p>\",\"PeriodicalId\":50472,\"journal\":{\"name\":\"Evolutionary Bioinformatics\",\"volume\":\"16 \",\"pages\":\"1176934320920310\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1176934320920310\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1177/1176934320920310\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/1176934320920310","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Inferring Causation in Yeast Gene Association Networks With Kernel Logistic Regression.
Computational prediction of gene-gene associations is one of the productive directions in the study of bioinformatics. Many tools are developed to infer the relation between genes using different biological data sources. The association of a pair of genes deduced from the analysis of biological data becomes meaningful when it reflects the directionality and the type of reaction between genes. In this work, we follow another method to construct a causal gene co-expression network while identifying transcription factors in each pair of genes using microarray expression data. We adopt a machine learning technique based on a logistic regression model to tackle the sparsity of the network and to improve the quality of the prediction accuracy. The proposed system classifies each pair of genes into either connected or nonconnected class using the data of the correlation between these genes in the whole Saccharomyces cerevisiae genome. The accuracy of the classification model in predicting related genes was evaluated using several data sets for the yeast regulatory network. Our system achieves high performance in terms of several statistical measures.
期刊介绍:
Evolutionary Bioinformatics is an open access, peer reviewed international journal focusing on evolutionary bioinformatics. The journal aims to support understanding of organismal form and function through use of molecular, genetic, genomic and proteomic data by giving due consideration to its evolutionary context.