基于核和最优传输的协变量和右审查寿命之间的独立性检验。

IF 1.2 4区 数学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
David Rindt, Dino Sejdinovic, David Steinsaltz
{"title":"基于核和最优传输的协变量和右审查寿命之间的独立性检验。","authors":"David Rindt,&nbsp;Dino Sejdinovic,&nbsp;David Steinsaltz","doi":"10.1515/ijb-2020-0022","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a nonparametric test of independence, termed optHSIC, between a covariate and a right-censored lifetime. Because the presence of censoring creates a challenge in applying the standard permutation-based testing approaches, we use optimal transport to transform the censored dataset into an uncensored one, while preserving the relevant dependencies. We then apply a permutation test using the kernel-based dependence measure as a statistic to the transformed dataset. The type 1 error is proven to be correct in the case where censoring is independent of the covariate. Experiments indicate that optHSIC has power against a much wider class of alternatives than Cox proportional hazards regression and that it has the correct type 1 control even in the challenging cases where censoring strongly depends on the covariate.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"17 2","pages":"331-348"},"PeriodicalIF":1.2000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2020-0022","citationCount":"4","resultStr":"{\"title\":\"A kernel- and optimal transport- based test of independence between covariates and right-censored lifetimes.\",\"authors\":\"David Rindt,&nbsp;Dino Sejdinovic,&nbsp;David Steinsaltz\",\"doi\":\"10.1515/ijb-2020-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a nonparametric test of independence, termed optHSIC, between a covariate and a right-censored lifetime. Because the presence of censoring creates a challenge in applying the standard permutation-based testing approaches, we use optimal transport to transform the censored dataset into an uncensored one, while preserving the relevant dependencies. We then apply a permutation test using the kernel-based dependence measure as a statistic to the transformed dataset. The type 1 error is proven to be correct in the case where censoring is independent of the covariate. Experiments indicate that optHSIC has power against a much wider class of alternatives than Cox proportional hazards regression and that it has the correct type 1 control even in the challenging cases where censoring strongly depends on the covariate.</p>\",\"PeriodicalId\":49058,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\"17 2\",\"pages\":\"331-348\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/ijb-2020-0022\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2020-0022\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2020-0022","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一种非参数的独立性检验,称为optHSIC,在协变量和右审查寿命之间。由于审查的存在给应用标准的基于排列的测试方法带来了挑战,我们使用最优传输将审查的数据集转换为未审查的数据集,同时保留相关的依赖关系。然后,我们使用基于核的依赖性度量作为转换数据集的统计量应用置换测试。在审查与协变量无关的情况下,类型1误差被证明是正确的。实验表明,optHSIC具有比Cox比例风险回归更广泛的选择类别的能力,并且即使在审查强烈依赖于协变量的具有挑战性的情况下,它也具有正确的1型控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A kernel- and optimal transport- based test of independence between covariates and right-censored lifetimes.

We propose a nonparametric test of independence, termed optHSIC, between a covariate and a right-censored lifetime. Because the presence of censoring creates a challenge in applying the standard permutation-based testing approaches, we use optimal transport to transform the censored dataset into an uncensored one, while preserving the relevant dependencies. We then apply a permutation test using the kernel-based dependence measure as a statistic to the transformed dataset. The type 1 error is proven to be correct in the case where censoring is independent of the covariate. Experiments indicate that optHSIC has power against a much wider class of alternatives than Cox proportional hazards regression and that it has the correct type 1 control even in the challenging cases where censoring strongly depends on the covariate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Biostatistics
International Journal of Biostatistics MATHEMATICAL & COMPUTATIONAL BIOLOGY-STATISTICS & PROBABILITY
CiteScore
2.10
自引率
8.30%
发文量
28
审稿时长
>12 weeks
期刊介绍: The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信