{"title":"PDGF-AA通过PI3K/Akt通路促进软骨细胞间隙连接的细胞间通讯。","authors":"Siqun Xu, Yang Liu, Demao Zhang, Hongcan Huang, Jiachi Li, Jieya Wei, Yueyi Yang, Yujia Cui, Jing Xie, Xuedong Zhou","doi":"10.1080/03008207.2022.2036733","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gap junction intercellular communication (GJIC) plays an important role in cell growth, development and homeostasis. Connexin 43 (Cx43) is an important half-channel protein responsible for gap junction formation. Platelet-derived growth factor AA (PDGF-AA) regulates the proliferation, migration, metabolism, apoptosis and cell cycle of chondrocytes. However, the role of PDGF-AA in gap junction intercellular communication in chondrocytes is not fully understood. In the current study, we performed experiments to explore the effect of PDGF-AA on GJIC and its underlying biomechanical mechanism.</p><p><strong>Methods: </strong>qPCR was performed to determine the expression of PDGF, PDGFR and connexin family genes in chondrocytes and/or cartilage. A scrape loading/dye transfer assay was used to determine GJIC. Western blot analysis was applied to detect the expression of Cx43 and PI3K/Akt signaling pathway proteins. Immunofluorescence staining was utilized to examine protein distribution. Scanning electron microscopy was used to delineate the morphology of chondrocytes.</p><p><strong>Results: </strong>Expression of <i>PDGF-A</i> mRNA was highest among the PDGF family in chondrocytes and cartilage tissues. PDGF-AA promoted functional GJIC formation in chondrocytes by upregulating the expression of Cx43. Enhanced functional GJIC formation in chondrocytes induced by PDGF-AA occurred through the activation of PI3K/Akt signaling and its nuclear accumulation.</p><p><strong>Conclusion: </strong>For the first time, this study provides evidence demonstrating the role of PDGF-AA in cell-to-cell communication in chondrocytes through mediating Cx43 expression.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"PDGF-AA promotes gap junction intercellular communication in chondrocytes via the PI3K/Akt pathway.\",\"authors\":\"Siqun Xu, Yang Liu, Demao Zhang, Hongcan Huang, Jiachi Li, Jieya Wei, Yueyi Yang, Yujia Cui, Jing Xie, Xuedong Zhou\",\"doi\":\"10.1080/03008207.2022.2036733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Gap junction intercellular communication (GJIC) plays an important role in cell growth, development and homeostasis. Connexin 43 (Cx43) is an important half-channel protein responsible for gap junction formation. Platelet-derived growth factor AA (PDGF-AA) regulates the proliferation, migration, metabolism, apoptosis and cell cycle of chondrocytes. However, the role of PDGF-AA in gap junction intercellular communication in chondrocytes is not fully understood. In the current study, we performed experiments to explore the effect of PDGF-AA on GJIC and its underlying biomechanical mechanism.</p><p><strong>Methods: </strong>qPCR was performed to determine the expression of PDGF, PDGFR and connexin family genes in chondrocytes and/or cartilage. A scrape loading/dye transfer assay was used to determine GJIC. Western blot analysis was applied to detect the expression of Cx43 and PI3K/Akt signaling pathway proteins. Immunofluorescence staining was utilized to examine protein distribution. Scanning electron microscopy was used to delineate the morphology of chondrocytes.</p><p><strong>Results: </strong>Expression of <i>PDGF-A</i> mRNA was highest among the PDGF family in chondrocytes and cartilage tissues. PDGF-AA promoted functional GJIC formation in chondrocytes by upregulating the expression of Cx43. Enhanced functional GJIC formation in chondrocytes induced by PDGF-AA occurred through the activation of PI3K/Akt signaling and its nuclear accumulation.</p><p><strong>Conclusion: </strong>For the first time, this study provides evidence demonstrating the role of PDGF-AA in cell-to-cell communication in chondrocytes through mediating Cx43 expression.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/03008207.2022.2036733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03008207.2022.2036733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
PDGF-AA promotes gap junction intercellular communication in chondrocytes via the PI3K/Akt pathway.
Background: Gap junction intercellular communication (GJIC) plays an important role in cell growth, development and homeostasis. Connexin 43 (Cx43) is an important half-channel protein responsible for gap junction formation. Platelet-derived growth factor AA (PDGF-AA) regulates the proliferation, migration, metabolism, apoptosis and cell cycle of chondrocytes. However, the role of PDGF-AA in gap junction intercellular communication in chondrocytes is not fully understood. In the current study, we performed experiments to explore the effect of PDGF-AA on GJIC and its underlying biomechanical mechanism.
Methods: qPCR was performed to determine the expression of PDGF, PDGFR and connexin family genes in chondrocytes and/or cartilage. A scrape loading/dye transfer assay was used to determine GJIC. Western blot analysis was applied to detect the expression of Cx43 and PI3K/Akt signaling pathway proteins. Immunofluorescence staining was utilized to examine protein distribution. Scanning electron microscopy was used to delineate the morphology of chondrocytes.
Results: Expression of PDGF-A mRNA was highest among the PDGF family in chondrocytes and cartilage tissues. PDGF-AA promoted functional GJIC formation in chondrocytes by upregulating the expression of Cx43. Enhanced functional GJIC formation in chondrocytes induced by PDGF-AA occurred through the activation of PI3K/Akt signaling and its nuclear accumulation.
Conclusion: For the first time, this study provides evidence demonstrating the role of PDGF-AA in cell-to-cell communication in chondrocytes through mediating Cx43 expression.