Femke Christina Ching-Chuan van Rhijn-Brouwer, Hendrik Gremmels, Krista Den Ouden, Martin Teraa, Joost Ougust Fledderus, Marianne Christina Verhaar
{"title":"在后肢缺血模型中,人骨髓单个核细胞不能改善肢体灌注。","authors":"Femke Christina Ching-Chuan van Rhijn-Brouwer, Hendrik Gremmels, Krista Den Ouden, Martin Teraa, Joost Ougust Fledderus, Marianne Christina Verhaar","doi":"10.1089/scd.2021.0261","DOIUrl":null,"url":null,"abstract":"<p><p>Effective treatments for chronic limb-threatening ischemia are lacking. (Pre)clinical studies on administration of bone marrow (BM) mononuclear cells (MNCs) and BM-derived mesenchymal stromal cells (MSCs) have shown variable results and no studies have directly compared administration of human BM MNCs and BM MSCs in in vivo models. We studied the effect of intramuscular administration of human BM-derived MNCs and MSCs on limb perfusion in the murine hindlimb ischemia (HLI) model. Human BM MNCs and MSCs were obtained from healthy consenting donors. Both cell types were cryopreserved before use. Twenty-four hours after induction of HLI, nude NMRI mice were randomized to receive intramuscular administration of human BM MNCs (<i>n</i> = 13), or BM MSCs (<i>n</i> = 14), or vehicle control (<i>n</i> = 19) in various doses. Limb perfusion was measured using laser Doppler imaging on day 0, 1, 4, 7, 10, and 14. Intramuscular injection of human BM MNCs did not improve limb perfusion as compared with vehicle over the 2 weeks after cell administration (<i>P</i> = 0.88, mean relative perfusion for vehicle 0.56 ± 0.04 and 0.53 ± 0.04 for BM MNCs at day 14). Administration of human BM MSCs significantly improved limb perfusion as compared with both BM MNCs and vehicle (<i>P</i> ≤ 0.001, mean relative perfusion at day 14 0.79 ± 0.06). Our data suggest that BM MNCs are less suitable than BM MSCs for cell-based therapy that aims to restore perfusion.</p>","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":"31 7-8","pages":"176-180"},"PeriodicalIF":2.5000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/26/0b/scd.2021.0261.PMC9057881.pdf","citationCount":"2","resultStr":"{\"title\":\"Human Bone Marrow Mononuclear Cells Do Not Improve Limb Perfusion in the Hindlimb Ischemia Model.\",\"authors\":\"Femke Christina Ching-Chuan van Rhijn-Brouwer, Hendrik Gremmels, Krista Den Ouden, Martin Teraa, Joost Ougust Fledderus, Marianne Christina Verhaar\",\"doi\":\"10.1089/scd.2021.0261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Effective treatments for chronic limb-threatening ischemia are lacking. (Pre)clinical studies on administration of bone marrow (BM) mononuclear cells (MNCs) and BM-derived mesenchymal stromal cells (MSCs) have shown variable results and no studies have directly compared administration of human BM MNCs and BM MSCs in in vivo models. We studied the effect of intramuscular administration of human BM-derived MNCs and MSCs on limb perfusion in the murine hindlimb ischemia (HLI) model. Human BM MNCs and MSCs were obtained from healthy consenting donors. Both cell types were cryopreserved before use. Twenty-four hours after induction of HLI, nude NMRI mice were randomized to receive intramuscular administration of human BM MNCs (<i>n</i> = 13), or BM MSCs (<i>n</i> = 14), or vehicle control (<i>n</i> = 19) in various doses. Limb perfusion was measured using laser Doppler imaging on day 0, 1, 4, 7, 10, and 14. Intramuscular injection of human BM MNCs did not improve limb perfusion as compared with vehicle over the 2 weeks after cell administration (<i>P</i> = 0.88, mean relative perfusion for vehicle 0.56 ± 0.04 and 0.53 ± 0.04 for BM MNCs at day 14). Administration of human BM MSCs significantly improved limb perfusion as compared with both BM MNCs and vehicle (<i>P</i> ≤ 0.001, mean relative perfusion at day 14 0.79 ± 0.06). Our data suggest that BM MNCs are less suitable than BM MSCs for cell-based therapy that aims to restore perfusion.</p>\",\"PeriodicalId\":21934,\"journal\":{\"name\":\"Stem cells and development\",\"volume\":\"31 7-8\",\"pages\":\"176-180\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/26/0b/scd.2021.0261.PMC9057881.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cells and development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/scd.2021.0261\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/3/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/scd.2021.0261","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Human Bone Marrow Mononuclear Cells Do Not Improve Limb Perfusion in the Hindlimb Ischemia Model.
Effective treatments for chronic limb-threatening ischemia are lacking. (Pre)clinical studies on administration of bone marrow (BM) mononuclear cells (MNCs) and BM-derived mesenchymal stromal cells (MSCs) have shown variable results and no studies have directly compared administration of human BM MNCs and BM MSCs in in vivo models. We studied the effect of intramuscular administration of human BM-derived MNCs and MSCs on limb perfusion in the murine hindlimb ischemia (HLI) model. Human BM MNCs and MSCs were obtained from healthy consenting donors. Both cell types were cryopreserved before use. Twenty-four hours after induction of HLI, nude NMRI mice were randomized to receive intramuscular administration of human BM MNCs (n = 13), or BM MSCs (n = 14), or vehicle control (n = 19) in various doses. Limb perfusion was measured using laser Doppler imaging on day 0, 1, 4, 7, 10, and 14. Intramuscular injection of human BM MNCs did not improve limb perfusion as compared with vehicle over the 2 weeks after cell administration (P = 0.88, mean relative perfusion for vehicle 0.56 ± 0.04 and 0.53 ± 0.04 for BM MNCs at day 14). Administration of human BM MSCs significantly improved limb perfusion as compared with both BM MNCs and vehicle (P ≤ 0.001, mean relative perfusion at day 14 0.79 ± 0.06). Our data suggest that BM MNCs are less suitable than BM MSCs for cell-based therapy that aims to restore perfusion.
期刊介绍:
Stem Cells and Development is globally recognized as the trusted source for critical, even controversial coverage of emerging hypotheses and novel findings. With a focus on stem cells of all tissue types and their potential therapeutic applications, the Journal provides clinical, basic, and translational scientists with cutting-edge research and findings.
Stem Cells and Development coverage includes:
Embryogenesis and adult counterparts of this process
Physical processes linking stem cells, primary cell function, and structural development
Hypotheses exploring the relationship between genotype and phenotype
Development of vasculature, CNS, and other germ layer development and defects
Pluripotentiality of embryonic and somatic stem cells
The role of genetic and epigenetic factors in development