Theresa Kasprzyk, Sabrina Triffault, Brian R Long, Stephen J Zoog, Christian Vettermann
{"title":"使用基于细胞的转导抑制试验验证检测AAV基因治疗的中和抗体。","authors":"Theresa Kasprzyk, Sabrina Triffault, Brian R Long, Stephen J Zoog, Christian Vettermann","doi":"10.1016/j.omtm.2022.01.004","DOIUrl":null,"url":null,"abstract":"<p><p>Successful treatment with adeno-associated virus (AAV)-based gene therapies can be limited by pre-existing anti-AAV antibodies. Cell-based transduction inhibition (TI) assays are useful to characterize the neutralizing potential of anti-AAV antibodies in patient samples. While these assays are commonly used, they are not specific for neutralizing antibodies (NAbs) against AAV, also detecting non-antibody-based factors that inhibit AAV transduction <i>in vitro</i> but may not substantially decrease efficacy <i>in vivo</i>. This paper describes the development and bioanalytical validation of a confirmatory assay to improve the specificity of detecting anti-AAV5 NAbs in cell-based TI assays. Samples that screen positive for transduction inhibitors are subsequently depleted of all classes of immunoglobulins using agarose resins conjugated with protein A, G, and L (AGL), which restores AAV5 transduction for NAb-containing samples. Unconjugated agarose resin serves as a mock control for non-specific depletion effects and facilitates normalization of the transduction efficiencies between an AGL- and mock-treated sample; the normalized value is termed the AGL/mock ratio. During validation, a confirmatory cut point for the AGL/mock ratio was derived; sensitivity, precision, selectivity, and matrix interference were also assessed. This confirmatory TI assay facilitates a characterization of humoral immunity to AAV gene therapy by reliably distinguishing NAbs from non-antibody-based neutralizing factors.</p>","PeriodicalId":517056,"journal":{"name":"Molecular Therapy. Methods & Clinical Development","volume":" ","pages":"222-229"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f0/69/main.PMC8803586.pdf","citationCount":"3","resultStr":"{\"title\":\"Confirmatory detection of neutralizing antibodies to AAV gene therapy using a cell-based transduction inhibition assay.\",\"authors\":\"Theresa Kasprzyk, Sabrina Triffault, Brian R Long, Stephen J Zoog, Christian Vettermann\",\"doi\":\"10.1016/j.omtm.2022.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Successful treatment with adeno-associated virus (AAV)-based gene therapies can be limited by pre-existing anti-AAV antibodies. Cell-based transduction inhibition (TI) assays are useful to characterize the neutralizing potential of anti-AAV antibodies in patient samples. While these assays are commonly used, they are not specific for neutralizing antibodies (NAbs) against AAV, also detecting non-antibody-based factors that inhibit AAV transduction <i>in vitro</i> but may not substantially decrease efficacy <i>in vivo</i>. This paper describes the development and bioanalytical validation of a confirmatory assay to improve the specificity of detecting anti-AAV5 NAbs in cell-based TI assays. Samples that screen positive for transduction inhibitors are subsequently depleted of all classes of immunoglobulins using agarose resins conjugated with protein A, G, and L (AGL), which restores AAV5 transduction for NAb-containing samples. Unconjugated agarose resin serves as a mock control for non-specific depletion effects and facilitates normalization of the transduction efficiencies between an AGL- and mock-treated sample; the normalized value is termed the AGL/mock ratio. During validation, a confirmatory cut point for the AGL/mock ratio was derived; sensitivity, precision, selectivity, and matrix interference were also assessed. This confirmatory TI assay facilitates a characterization of humoral immunity to AAV gene therapy by reliably distinguishing NAbs from non-antibody-based neutralizing factors.</p>\",\"PeriodicalId\":517056,\"journal\":{\"name\":\"Molecular Therapy. Methods & Clinical Development\",\"volume\":\" \",\"pages\":\"222-229\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f0/69/main.PMC8803586.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy. Methods & Clinical Development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.omtm.2022.01.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/3/10 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy. Methods & Clinical Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtm.2022.01.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/10 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Confirmatory detection of neutralizing antibodies to AAV gene therapy using a cell-based transduction inhibition assay.
Successful treatment with adeno-associated virus (AAV)-based gene therapies can be limited by pre-existing anti-AAV antibodies. Cell-based transduction inhibition (TI) assays are useful to characterize the neutralizing potential of anti-AAV antibodies in patient samples. While these assays are commonly used, they are not specific for neutralizing antibodies (NAbs) against AAV, also detecting non-antibody-based factors that inhibit AAV transduction in vitro but may not substantially decrease efficacy in vivo. This paper describes the development and bioanalytical validation of a confirmatory assay to improve the specificity of detecting anti-AAV5 NAbs in cell-based TI assays. Samples that screen positive for transduction inhibitors are subsequently depleted of all classes of immunoglobulins using agarose resins conjugated with protein A, G, and L (AGL), which restores AAV5 transduction for NAb-containing samples. Unconjugated agarose resin serves as a mock control for non-specific depletion effects and facilitates normalization of the transduction efficiencies between an AGL- and mock-treated sample; the normalized value is termed the AGL/mock ratio. During validation, a confirmatory cut point for the AGL/mock ratio was derived; sensitivity, precision, selectivity, and matrix interference were also assessed. This confirmatory TI assay facilitates a characterization of humoral immunity to AAV gene therapy by reliably distinguishing NAbs from non-antibody-based neutralizing factors.