{"title":"个体隐性协调能力的建模与预测。","authors":"Dor Mizrahi, Ilan Laufer, Inon Zuckerman","doi":"10.1186/s40708-022-00152-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Previous experiments in tacit coordination games hinted that some people are more successful in achieving coordination than others, although the variability in this ability has not yet been examined before. With that in mind, the overarching aim of our study is to model and describe the variability in human decision-making behavior in the context of tacit coordination games.</p><p><strong>Methods: </strong>In this study, we conducted a large-scale experiment to collect behavioral data, characterized the distribution of tacit coordination ability, and modeled the decision-making behavior of players. First, we measured the multimodality in the data and described it by using a Gaussian mixture model. Then, using multivariate linear regression and dimensionality reduction (PCA), we have constructed a model linking between individual strategic profiles of players and their coordination ability. Finally, we validated the predictive performance of the model by using external validation.</p><p><strong>Results: </strong>We demonstrated that coordination ability is best described by a multimodal distribution corresponding to the levels of coordination ability and that there is a significant relationship between the player's strategic profile and their coordination ability. External validation determined that our predictive model is robust.</p><p><strong>Conclusions: </strong>The study provides insight into the amount of variability that exists in individual tacit coordination ability as well as in individual strategic profiles and shows that both are quite diverse. Our findings may facilitate the construction of improved algorithms for human-machine interaction in diverse contexts. Additional avenues for future research are discussed.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":" ","pages":"4"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8817001/pdf/","citationCount":"1","resultStr":"{\"title\":\"Modeling and predicting individual tacit coordination ability.\",\"authors\":\"Dor Mizrahi, Ilan Laufer, Inon Zuckerman\",\"doi\":\"10.1186/s40708-022-00152-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Previous experiments in tacit coordination games hinted that some people are more successful in achieving coordination than others, although the variability in this ability has not yet been examined before. With that in mind, the overarching aim of our study is to model and describe the variability in human decision-making behavior in the context of tacit coordination games.</p><p><strong>Methods: </strong>In this study, we conducted a large-scale experiment to collect behavioral data, characterized the distribution of tacit coordination ability, and modeled the decision-making behavior of players. First, we measured the multimodality in the data and described it by using a Gaussian mixture model. Then, using multivariate linear regression and dimensionality reduction (PCA), we have constructed a model linking between individual strategic profiles of players and their coordination ability. Finally, we validated the predictive performance of the model by using external validation.</p><p><strong>Results: </strong>We demonstrated that coordination ability is best described by a multimodal distribution corresponding to the levels of coordination ability and that there is a significant relationship between the player's strategic profile and their coordination ability. External validation determined that our predictive model is robust.</p><p><strong>Conclusions: </strong>The study provides insight into the amount of variability that exists in individual tacit coordination ability as well as in individual strategic profiles and shows that both are quite diverse. Our findings may facilitate the construction of improved algorithms for human-machine interaction in diverse contexts. Additional avenues for future research are discussed.</p>\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\" \",\"pages\":\"4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8817001/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-022-00152-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-022-00152-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Modeling and predicting individual tacit coordination ability.
Background: Previous experiments in tacit coordination games hinted that some people are more successful in achieving coordination than others, although the variability in this ability has not yet been examined before. With that in mind, the overarching aim of our study is to model and describe the variability in human decision-making behavior in the context of tacit coordination games.
Methods: In this study, we conducted a large-scale experiment to collect behavioral data, characterized the distribution of tacit coordination ability, and modeled the decision-making behavior of players. First, we measured the multimodality in the data and described it by using a Gaussian mixture model. Then, using multivariate linear regression and dimensionality reduction (PCA), we have constructed a model linking between individual strategic profiles of players and their coordination ability. Finally, we validated the predictive performance of the model by using external validation.
Results: We demonstrated that coordination ability is best described by a multimodal distribution corresponding to the levels of coordination ability and that there is a significant relationship between the player's strategic profile and their coordination ability. External validation determined that our predictive model is robust.
Conclusions: The study provides insight into the amount of variability that exists in individual tacit coordination ability as well as in individual strategic profiles and shows that both are quite diverse. Our findings may facilitate the construction of improved algorithms for human-machine interaction in diverse contexts. Additional avenues for future research are discussed.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing