有界度相似图的彩色正交聚类。

IF 0.9 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Alitzel López Sánchez, Manuel Lafond
{"title":"有界度相似图的彩色正交聚类。","authors":"Alitzel López Sánchez,&nbsp;Manuel Lafond","doi":"10.1142/S0219720021400102","DOIUrl":null,"url":null,"abstract":"<p><p>Clustering genes in similarity graphs is a popular approach for orthology prediction. Most algorithms group genes without considering their species, which results in clusters that contain several paralogous genes. Moreover, clustering is known to be problematic when in-paralogs arise from ancient duplications. Recently, we proposed a two-step process that avoids these problems. First, we infer clusters of only orthologs (i.e. with only genes from distinct species), and second, we infer the missing inter-cluster orthologs. In this paper, we focus on the first step, which leads to a problem we call Colorful Clustering. In general, this is as hard as classical clustering. However, in similarity graphs, the number of species is usually small, as well as the neighborhood size of genes in other species. We therefore study the problem of clustering in which the number of colors is bounded by [Formula: see text], and each gene has at most [Formula: see text] neighbors in another species. We show that the well-known <i>cluster editing</i> formulation remains NP-hard even when [Formula: see text] and [Formula: see text]. We then propose a fixed-parameter algorithm in [Formula: see text] to find the single best cluster in the graph. We implemented this algorithm and included it in the aforementioned two-step approach. Experiments on simulated data show that this approach performs favorably to applying only an unconstrained clustering step.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":"19 6","pages":"2140010"},"PeriodicalIF":0.9000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Colorful orthology clustering in bounded-degree similarity graphs.\",\"authors\":\"Alitzel López Sánchez,&nbsp;Manuel Lafond\",\"doi\":\"10.1142/S0219720021400102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clustering genes in similarity graphs is a popular approach for orthology prediction. Most algorithms group genes without considering their species, which results in clusters that contain several paralogous genes. Moreover, clustering is known to be problematic when in-paralogs arise from ancient duplications. Recently, we proposed a two-step process that avoids these problems. First, we infer clusters of only orthologs (i.e. with only genes from distinct species), and second, we infer the missing inter-cluster orthologs. In this paper, we focus on the first step, which leads to a problem we call Colorful Clustering. In general, this is as hard as classical clustering. However, in similarity graphs, the number of species is usually small, as well as the neighborhood size of genes in other species. We therefore study the problem of clustering in which the number of colors is bounded by [Formula: see text], and each gene has at most [Formula: see text] neighbors in another species. We show that the well-known <i>cluster editing</i> formulation remains NP-hard even when [Formula: see text] and [Formula: see text]. We then propose a fixed-parameter algorithm in [Formula: see text] to find the single best cluster in the graph. We implemented this algorithm and included it in the aforementioned two-step approach. Experiments on simulated data show that this approach performs favorably to applying only an unconstrained clustering step.</p>\",\"PeriodicalId\":48910,\"journal\":{\"name\":\"Journal of Bioinformatics and Computational Biology\",\"volume\":\"19 6\",\"pages\":\"2140010\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219720021400102\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/11/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720021400102","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/13 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在相似图中聚类基因是一种常用的同源预测方法。大多数算法对基因进行分组而不考虑它们的种类,这导致簇中包含几个相似的基因。此外,已知聚类是有问题的,当同源性产生于古老的重复。最近,我们提出了一个两步法来避免这些问题。首先,我们推断出只有同源物的簇(即只有来自不同物种的基因),其次,我们推断出缺失的簇间同源物。在本文中,我们关注的是第一步,这导致了一个问题,我们称之为彩色聚类。一般来说,这和经典聚类一样困难。然而,在相似图中,物种的数量通常较小,其他物种的基因邻域大小也较小。因此,我们研究了聚类问题,其中颜色的数量由[公式:见文]限定,并且每个基因在另一个物种中最多有[公式:见文]邻居。我们表明,即使在[公式:见文本]和[公式:见文本]时,著名的聚类编辑公式仍然是np困难的。然后,我们在[公式:见文本]中提出一种固定参数算法来寻找图中单个最佳聚类。我们实现了这个算法,并将其包含在前面提到的两步方法中。在模拟数据上的实验表明,该方法比只应用无约束聚类步骤具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Colorful orthology clustering in bounded-degree similarity graphs.

Clustering genes in similarity graphs is a popular approach for orthology prediction. Most algorithms group genes without considering their species, which results in clusters that contain several paralogous genes. Moreover, clustering is known to be problematic when in-paralogs arise from ancient duplications. Recently, we proposed a two-step process that avoids these problems. First, we infer clusters of only orthologs (i.e. with only genes from distinct species), and second, we infer the missing inter-cluster orthologs. In this paper, we focus on the first step, which leads to a problem we call Colorful Clustering. In general, this is as hard as classical clustering. However, in similarity graphs, the number of species is usually small, as well as the neighborhood size of genes in other species. We therefore study the problem of clustering in which the number of colors is bounded by [Formula: see text], and each gene has at most [Formula: see text] neighbors in another species. We show that the well-known cluster editing formulation remains NP-hard even when [Formula: see text] and [Formula: see text]. We then propose a fixed-parameter algorithm in [Formula: see text] to find the single best cluster in the graph. We implemented this algorithm and included it in the aforementioned two-step approach. Experiments on simulated data show that this approach performs favorably to applying only an unconstrained clustering step.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bioinformatics and Computational Biology
Journal of Bioinformatics and Computational Biology MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
2.10
自引率
0.00%
发文量
57
期刊介绍: The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information. The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信