{"title":"AQP5通路通过减轻AQP5敲除小鼠泪腺内质网应激性炎症来维持泪腺稳态。","authors":"Shaohua Hu, Guohu Di, Xin Cao, Yaning Liu, Yihui Wang, Hui Zhao, Dianqiang Wang, Peng Chen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>AQP5<sup>-/-</sup> mice spontaneously exhibit dry eye symptoms. The purpose of this study was to assess the endoplasmic reticulum (ER) stress-mediated inflammation generated by a deficiency of aquaporin 5 (AQP5) in the lacrimal gland.</p><p><strong>Methods: </strong>Hematoxylin and eosin (H&E) staining, Oil Red O staining, and transmission electron microscopy (TEM) analysis were performed to identify structural changes in lacrimal gland epithelial cells because of AQP5 deficiency. Corneal epithelial defects were assessed with sodium fluorescein staining. The expression profiles of mRNA and proteins were determined by quantitative real-time reverse transcription PCR (qRT-PCR) and western blot. Mice in the quercetin group were injected intraperitoneally with 40 mg/kg of quercetin, and the control group was injected with an equal volume of dimethyl sulfoxide (DMSO) for 4 weeks.</p><p><strong>Results: </strong>Aqueous tear secretion fell at about 50% in 1- and 6-month-old AQP5<sup>-/-</sup> mice compared with that of AQP5<sup>+/+</sup> mice. TEM showed that the ER structure was damaged. ER stress was significantly increased in the lacrimal gland of AQP5<sup>-/-</sup> mice. Lipid droplets accumulated in the matrix and acinar cells, and changes occurred in the lipid metabolism and gene expression levels for <i>PPARα</i>, <i>CPT1α</i>, and <i>CPT2</i> in the AQP5<sup>-/-</sup> mice. Immune cell infiltration and increases in the gene expression levels of the chemokines <i>CXCL1</i>, <i>CXCL2</i>, and <i>CCL5</i> were found in the lacrimal gland of AQP5<sup>-/-</sup> mice. Quercetin partially reversed ER stress levels, inflammation, and lipid accumulation, and it inhibited tear secretion.</p><p><strong>Conclusions: </strong>The study data indicated that a deficiency of AQP5 induced pathophysiological changes and functional decompensation of the lacrimal gland. Quercetin may improve the inflammation in the lacrimal glands of AQP5<sup>-/-</sup> mice by regulating the ER stress levels.</p>","PeriodicalId":18866,"journal":{"name":"Molecular Vision","volume":"27 ","pages":"679-690"},"PeriodicalIF":1.8000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9d/8b/mv-v27-679.PMC8684812.pdf","citationCount":"0","resultStr":"{\"title\":\"Lacrimal gland homeostasis is maintained by the <i>AQP5</i> pathway by attenuating endoplasmic reticulum stress inflammation in the lacrimal gland of <i>AQP5</i> knockout mice.\",\"authors\":\"Shaohua Hu, Guohu Di, Xin Cao, Yaning Liu, Yihui Wang, Hui Zhao, Dianqiang Wang, Peng Chen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>AQP5<sup>-/-</sup> mice spontaneously exhibit dry eye symptoms. The purpose of this study was to assess the endoplasmic reticulum (ER) stress-mediated inflammation generated by a deficiency of aquaporin 5 (AQP5) in the lacrimal gland.</p><p><strong>Methods: </strong>Hematoxylin and eosin (H&E) staining, Oil Red O staining, and transmission electron microscopy (TEM) analysis were performed to identify structural changes in lacrimal gland epithelial cells because of AQP5 deficiency. Corneal epithelial defects were assessed with sodium fluorescein staining. The expression profiles of mRNA and proteins were determined by quantitative real-time reverse transcription PCR (qRT-PCR) and western blot. Mice in the quercetin group were injected intraperitoneally with 40 mg/kg of quercetin, and the control group was injected with an equal volume of dimethyl sulfoxide (DMSO) for 4 weeks.</p><p><strong>Results: </strong>Aqueous tear secretion fell at about 50% in 1- and 6-month-old AQP5<sup>-/-</sup> mice compared with that of AQP5<sup>+/+</sup> mice. TEM showed that the ER structure was damaged. ER stress was significantly increased in the lacrimal gland of AQP5<sup>-/-</sup> mice. Lipid droplets accumulated in the matrix and acinar cells, and changes occurred in the lipid metabolism and gene expression levels for <i>PPARα</i>, <i>CPT1α</i>, and <i>CPT2</i> in the AQP5<sup>-/-</sup> mice. Immune cell infiltration and increases in the gene expression levels of the chemokines <i>CXCL1</i>, <i>CXCL2</i>, and <i>CCL5</i> were found in the lacrimal gland of AQP5<sup>-/-</sup> mice. Quercetin partially reversed ER stress levels, inflammation, and lipid accumulation, and it inhibited tear secretion.</p><p><strong>Conclusions: </strong>The study data indicated that a deficiency of AQP5 induced pathophysiological changes and functional decompensation of the lacrimal gland. Quercetin may improve the inflammation in the lacrimal glands of AQP5<sup>-/-</sup> mice by regulating the ER stress levels.</p>\",\"PeriodicalId\":18866,\"journal\":{\"name\":\"Molecular Vision\",\"volume\":\"27 \",\"pages\":\"679-690\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9d/8b/mv-v27-679.PMC8684812.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Vision\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Vision","FirstCategoryId":"3","ListUrlMain":"","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Lacrimal gland homeostasis is maintained by the AQP5 pathway by attenuating endoplasmic reticulum stress inflammation in the lacrimal gland of AQP5 knockout mice.
Purpose: AQP5-/- mice spontaneously exhibit dry eye symptoms. The purpose of this study was to assess the endoplasmic reticulum (ER) stress-mediated inflammation generated by a deficiency of aquaporin 5 (AQP5) in the lacrimal gland.
Methods: Hematoxylin and eosin (H&E) staining, Oil Red O staining, and transmission electron microscopy (TEM) analysis were performed to identify structural changes in lacrimal gland epithelial cells because of AQP5 deficiency. Corneal epithelial defects were assessed with sodium fluorescein staining. The expression profiles of mRNA and proteins were determined by quantitative real-time reverse transcription PCR (qRT-PCR) and western blot. Mice in the quercetin group were injected intraperitoneally with 40 mg/kg of quercetin, and the control group was injected with an equal volume of dimethyl sulfoxide (DMSO) for 4 weeks.
Results: Aqueous tear secretion fell at about 50% in 1- and 6-month-old AQP5-/- mice compared with that of AQP5+/+ mice. TEM showed that the ER structure was damaged. ER stress was significantly increased in the lacrimal gland of AQP5-/- mice. Lipid droplets accumulated in the matrix and acinar cells, and changes occurred in the lipid metabolism and gene expression levels for PPARα, CPT1α, and CPT2 in the AQP5-/- mice. Immune cell infiltration and increases in the gene expression levels of the chemokines CXCL1, CXCL2, and CCL5 were found in the lacrimal gland of AQP5-/- mice. Quercetin partially reversed ER stress levels, inflammation, and lipid accumulation, and it inhibited tear secretion.
Conclusions: The study data indicated that a deficiency of AQP5 induced pathophysiological changes and functional decompensation of the lacrimal gland. Quercetin may improve the inflammation in the lacrimal glands of AQP5-/- mice by regulating the ER stress levels.
期刊介绍:
Molecular Vision is a peer-reviewed journal dedicated to the dissemination of research results in molecular biology, cell biology, and the genetics of the visual system (ocular and cortical).
Molecular Vision publishes articles presenting original research that has not previously been published and comprehensive articles reviewing the current status of a particular field or topic. Submissions to Molecular Vision are subjected to rigorous peer review. Molecular Vision does NOT publish preprints.
For authors, Molecular Vision provides a rapid means of communicating important results. Access to Molecular Vision is free and unrestricted, allowing the widest possible audience for your article. Digital publishing allows you to use color images freely (and without fees). Additionally, you may publish animations, sounds, or other supplementary information that clarifies or supports your article. Each of the authors of an article may also list an electronic mail address (which will be updated upon request) to give interested readers easy access to authors.