{"title":"塌缩椭圆纤维K3曲面上的Hermitian-Yang-Mills连接。","authors":"Ved Datar, Adam Jacob","doi":"10.1007/s12220-021-00808-9","DOIUrl":null,"url":null,"abstract":"<p><p>Let <math><mrow><mi>X</mi> <mo>→</mo> <msup><mrow><mi>P</mi></mrow> <mn>1</mn></msup> </mrow> </math> be an elliptically fibered <i>K</i>3 surface, admitting a sequence <math><msub><mi>ω</mi> <mi>i</mi></msub> </math> of Ricci-flat metrics collapsing the fibers. Let <i>V</i> be a holomorphic <i>SU</i>(<i>n</i>) bundle over <i>X</i>, stable with respect to <math><msub><mi>ω</mi> <mi>i</mi></msub> </math> . Given the corresponding sequence <math><msub><mi>Ξ</mi> <mi>i</mi></msub> </math> of Hermitian-Yang-Mills connections on <i>V</i>, we prove that, if <i>E</i> is a generic fiber, the restricted sequence <math> <mrow><msub><mi>Ξ</mi> <mi>i</mi></msub> <msub><mrow><mo>|</mo></mrow> <mi>E</mi></msub> </mrow> </math> converges to a flat connection <math><msub><mi>A</mi> <mn>0</mn></msub> </math> . Furthermore, if the restriction <math> <msub><mrow><mi>V</mi> <mo>|</mo></mrow> <mi>E</mi></msub> </math> is of the form <math> <mrow><msubsup><mo>⊕</mo> <mrow><mi>j</mi> <mo>=</mo> <mn>1</mn></mrow> <mi>n</mi></msubsup> <msub><mi>O</mi> <mi>E</mi></msub> <mrow><mo>(</mo> <msub><mi>q</mi> <mi>j</mi></msub> <mo>-</mo> <mn>0</mn> <mo>)</mo></mrow> </mrow> </math> for <i>n</i> distinct points <math> <mrow><msub><mi>q</mi> <mi>j</mi></msub> <mo>∈</mo> <mi>E</mi></mrow> </math> , then these points uniquely determine <math><msub><mi>A</mi> <mn>0</mn></msub> </math> .</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741718/pdf/","citationCount":"2","resultStr":"{\"title\":\"Hermitian-Yang-Mills Connections on Collapsing Elliptically Fibered <i>K</i>3 Surfaces.\",\"authors\":\"Ved Datar, Adam Jacob\",\"doi\":\"10.1007/s12220-021-00808-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Let <math><mrow><mi>X</mi> <mo>→</mo> <msup><mrow><mi>P</mi></mrow> <mn>1</mn></msup> </mrow> </math> be an elliptically fibered <i>K</i>3 surface, admitting a sequence <math><msub><mi>ω</mi> <mi>i</mi></msub> </math> of Ricci-flat metrics collapsing the fibers. Let <i>V</i> be a holomorphic <i>SU</i>(<i>n</i>) bundle over <i>X</i>, stable with respect to <math><msub><mi>ω</mi> <mi>i</mi></msub> </math> . Given the corresponding sequence <math><msub><mi>Ξ</mi> <mi>i</mi></msub> </math> of Hermitian-Yang-Mills connections on <i>V</i>, we prove that, if <i>E</i> is a generic fiber, the restricted sequence <math> <mrow><msub><mi>Ξ</mi> <mi>i</mi></msub> <msub><mrow><mo>|</mo></mrow> <mi>E</mi></msub> </mrow> </math> converges to a flat connection <math><msub><mi>A</mi> <mn>0</mn></msub> </math> . Furthermore, if the restriction <math> <msub><mrow><mi>V</mi> <mo>|</mo></mrow> <mi>E</mi></msub> </math> is of the form <math> <mrow><msubsup><mo>⊕</mo> <mrow><mi>j</mi> <mo>=</mo> <mn>1</mn></mrow> <mi>n</mi></msubsup> <msub><mi>O</mi> <mi>E</mi></msub> <mrow><mo>(</mo> <msub><mi>q</mi> <mi>j</mi></msub> <mo>-</mo> <mn>0</mn> <mo>)</mo></mrow> </mrow> </math> for <i>n</i> distinct points <math> <mrow><msub><mi>q</mi> <mi>j</mi></msub> <mo>∈</mo> <mi>E</mi></mrow> </math> , then these points uniquely determine <math><msub><mi>A</mi> <mn>0</mn></msub> </math> .</p>\",\"PeriodicalId\":56121,\"journal\":{\"name\":\"Journal of Geometric Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741718/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-021-00808-9\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-021-00808-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
摘要
设X→p1是一个椭圆纤维的K3曲面,允许一个序列ω i的ricci平面度量使纤维坍缩。设V是X上的全纯SU(n)束,对ω i稳定。给定V上的Hermitian-Yang-Mills连接的对应序列Ξ i,证明了当E是一般光纤时,限制序列Ξ i | E收敛于平面连接a 0。更进一步,如果约束V | E的形式为⊕j = 1n O E (q j - 0)对于n个不同的点q j∈E,则这些点唯一地决定了A 0。
Hermitian-Yang-Mills Connections on Collapsing Elliptically Fibered K3 Surfaces.
Let be an elliptically fibered K3 surface, admitting a sequence of Ricci-flat metrics collapsing the fibers. Let V be a holomorphic SU(n) bundle over X, stable with respect to . Given the corresponding sequence of Hermitian-Yang-Mills connections on V, we prove that, if E is a generic fiber, the restricted sequence converges to a flat connection . Furthermore, if the restriction is of the form for n distinct points , then these points uniquely determine .
期刊介绍:
JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.