{"title":"用机器学习优化PIRADS 3类患者的临床风险因素解释和影像学表现。","authors":"Pubordee Aussavavirojekul, Apirak Hoonlor, Sittiporn Srinualnad","doi":"10.1002/pros.24266","DOIUrl":null,"url":null,"abstract":"Due to the low cancer‐detection rate in patients with PIRADS category 3 lesions, we created machine learning (ML) models to facilitate decision‐making about whether to perform prostate biopsies or monitor clinical information without biopsy results.","PeriodicalId":501684,"journal":{"name":"The Prostate","volume":" ","pages":"235-244"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimization of clinical risk-factor interpretation and radiological findings with machine learning for PIRADS category 3 patients.\",\"authors\":\"Pubordee Aussavavirojekul, Apirak Hoonlor, Sittiporn Srinualnad\",\"doi\":\"10.1002/pros.24266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the low cancer‐detection rate in patients with PIRADS category 3 lesions, we created machine learning (ML) models to facilitate decision‐making about whether to perform prostate biopsies or monitor clinical information without biopsy results.\",\"PeriodicalId\":501684,\"journal\":{\"name\":\"The Prostate\",\"volume\":\" \",\"pages\":\"235-244\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Prostate\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pros.24266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/11/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Prostate","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pros.24266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of clinical risk-factor interpretation and radiological findings with machine learning for PIRADS category 3 patients.
Due to the low cancer‐detection rate in patients with PIRADS category 3 lesions, we created machine learning (ML) models to facilitate decision‐making about whether to perform prostate biopsies or monitor clinical information without biopsy results.