{"title":"基于图关注网络的氨基酸环境亲和模型。","authors":"Xueheng Tong, Shuqi Liu, Jiawei Gu, Chunguo Wu, Yanchun Liang, Xiaohu Shi","doi":"10.1142/S0219720021500323","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins are engines involved in almost all functions of life. They have specific spatial structures formed by twisting and folding of one or more polypeptide chains composed of amino acids. Protein sites are protein structure microenvironments that can be identified by three-dimensional locations and local neighborhoods in which the structure or function exists. Understanding the amino acid environment affinity is essential for additional protein structural or functional studies, such as mutation analysis and functional site detection. In this study, an amino acid environment affinity model based on the graph attention network was developed. Initially, we constructed a protein graph according to the distance between amino acid pairs. Then, we extracted a set of structural features for each node. Finally, the protein graph and the associated node feature set were set to input the graph attention network model and to obtain the amino acid affinities. Numerical results show that our proposed method significantly outperforms a recent 3DCNN-based method by almost 30%.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":"20 1","pages":"2150032"},"PeriodicalIF":0.9000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amino acid environment affinity model based on graph attention network.\",\"authors\":\"Xueheng Tong, Shuqi Liu, Jiawei Gu, Chunguo Wu, Yanchun Liang, Xiaohu Shi\",\"doi\":\"10.1142/S0219720021500323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Proteins are engines involved in almost all functions of life. They have specific spatial structures formed by twisting and folding of one or more polypeptide chains composed of amino acids. Protein sites are protein structure microenvironments that can be identified by three-dimensional locations and local neighborhoods in which the structure or function exists. Understanding the amino acid environment affinity is essential for additional protein structural or functional studies, such as mutation analysis and functional site detection. In this study, an amino acid environment affinity model based on the graph attention network was developed. Initially, we constructed a protein graph according to the distance between amino acid pairs. Then, we extracted a set of structural features for each node. Finally, the protein graph and the associated node feature set were set to input the graph attention network model and to obtain the amino acid affinities. Numerical results show that our proposed method significantly outperforms a recent 3DCNN-based method by almost 30%.</p>\",\"PeriodicalId\":48910,\"journal\":{\"name\":\"Journal of Bioinformatics and Computational Biology\",\"volume\":\"20 1\",\"pages\":\"2150032\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219720021500323\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/11/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720021500323","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/13 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Amino acid environment affinity model based on graph attention network.
Proteins are engines involved in almost all functions of life. They have specific spatial structures formed by twisting and folding of one or more polypeptide chains composed of amino acids. Protein sites are protein structure microenvironments that can be identified by three-dimensional locations and local neighborhoods in which the structure or function exists. Understanding the amino acid environment affinity is essential for additional protein structural or functional studies, such as mutation analysis and functional site detection. In this study, an amino acid environment affinity model based on the graph attention network was developed. Initially, we constructed a protein graph according to the distance between amino acid pairs. Then, we extracted a set of structural features for each node. Finally, the protein graph and the associated node feature set were set to input the graph attention network model and to obtain the amino acid affinities. Numerical results show that our proposed method significantly outperforms a recent 3DCNN-based method by almost 30%.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.