Morla Phan, Changseok Kim, Anthony Mutsaers, Valerie Poirier, Brenda Coomber
{"title":"辐射和雷帕霉素治疗犬肥大细胞癌细胞对mTOR信号的调节。","authors":"Morla Phan, Changseok Kim, Anthony Mutsaers, Valerie Poirier, Brenda Coomber","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Rapamycin has been reported to reduce cancer cell survival in certain tumors following radiation therapy, but the mechanisms driving this phenomenon are unclear. Rapamycin inhibits mTOR signaling, a pathway responsible for several essential cell functions. The objective of this study was to investigate the effects of rapamycin and radiation on the activation and inhibition of mTOR signaling and the relationship between mTOR signaling and DNA damage response <i>in vitro</i> using canine mast cell tumor (MCT) cancer cell lines. Rapamycin rapidly inhibited S6K phosphorylation in a dose-dependent manner. Ionizing radiation (3, 6, or 10 Gy) was able to activate mTOR signalling, but the combination of radiation and rapamycin maintained mTOR inhibition. The comet assay revealed that co-treatment with rapamycin induced modest increases in the severity of DNA damage to MCT cells, but that these differences were not statistically significant. Although the relationship between mTOR and DNA damage response in MCT cancer cell lines remains unclear, our findings suggest the possibility of interaction, leading to enhancement of radiation response.</p>","PeriodicalId":9550,"journal":{"name":"Canadian journal of veterinary research = Revue canadienne de recherche veterinaire","volume":" ","pages":"3-12"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8697317/pdf/cjvr_01_3.pdf","citationCount":"0","resultStr":"{\"title\":\"Modulation of mTOR signaling by radiation and rapamycin treatment in canine mast cell cancer cells.\",\"authors\":\"Morla Phan, Changseok Kim, Anthony Mutsaers, Valerie Poirier, Brenda Coomber\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rapamycin has been reported to reduce cancer cell survival in certain tumors following radiation therapy, but the mechanisms driving this phenomenon are unclear. Rapamycin inhibits mTOR signaling, a pathway responsible for several essential cell functions. The objective of this study was to investigate the effects of rapamycin and radiation on the activation and inhibition of mTOR signaling and the relationship between mTOR signaling and DNA damage response <i>in vitro</i> using canine mast cell tumor (MCT) cancer cell lines. Rapamycin rapidly inhibited S6K phosphorylation in a dose-dependent manner. Ionizing radiation (3, 6, or 10 Gy) was able to activate mTOR signalling, but the combination of radiation and rapamycin maintained mTOR inhibition. The comet assay revealed that co-treatment with rapamycin induced modest increases in the severity of DNA damage to MCT cells, but that these differences were not statistically significant. Although the relationship between mTOR and DNA damage response in MCT cancer cell lines remains unclear, our findings suggest the possibility of interaction, leading to enhancement of radiation response.</p>\",\"PeriodicalId\":9550,\"journal\":{\"name\":\"Canadian journal of veterinary research = Revue canadienne de recherche veterinaire\",\"volume\":\" \",\"pages\":\"3-12\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8697317/pdf/cjvr_01_3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian journal of veterinary research = Revue canadienne de recherche veterinaire\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Veterinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of veterinary research = Revue canadienne de recherche veterinaire","FirstCategoryId":"97","ListUrlMain":"","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Veterinary","Score":null,"Total":0}
Modulation of mTOR signaling by radiation and rapamycin treatment in canine mast cell cancer cells.
Rapamycin has been reported to reduce cancer cell survival in certain tumors following radiation therapy, but the mechanisms driving this phenomenon are unclear. Rapamycin inhibits mTOR signaling, a pathway responsible for several essential cell functions. The objective of this study was to investigate the effects of rapamycin and radiation on the activation and inhibition of mTOR signaling and the relationship between mTOR signaling and DNA damage response in vitro using canine mast cell tumor (MCT) cancer cell lines. Rapamycin rapidly inhibited S6K phosphorylation in a dose-dependent manner. Ionizing radiation (3, 6, or 10 Gy) was able to activate mTOR signalling, but the combination of radiation and rapamycin maintained mTOR inhibition. The comet assay revealed that co-treatment with rapamycin induced modest increases in the severity of DNA damage to MCT cells, but that these differences were not statistically significant. Although the relationship between mTOR and DNA damage response in MCT cancer cell lines remains unclear, our findings suggest the possibility of interaction, leading to enhancement of radiation response.
期刊介绍:
The Canadian Journal of Veterinary Research, published by the Canadian Veterinary Medical Association, is Canada''s only veterinary research publication. This quarterly peer-reviewed online-only journal has earned a wide international readership through the publishing of high quality scientific papers in the field of veterinary medicine. The Journal publishes the results of original research in veterinary and comparative medicine.