RegVar:非编码调控变体的组织特异性优先级。

IF 11.5 2区 生物学 Q1 GENETICS & HEREDITY
Hao Lu, Luyu Ma, Cheng Quan, Lei Li, Yiming Lu, Gangqiao Zhou, Chenggang Zhang
{"title":"RegVar:非编码调控变体的组织特异性优先级。","authors":"Hao Lu,&nbsp;Luyu Ma,&nbsp;Cheng Quan,&nbsp;Lei Li,&nbsp;Yiming Lu,&nbsp;Gangqiao Zhou,&nbsp;Chenggang Zhang","doi":"10.1016/j.gpb.2021.08.011","DOIUrl":null,"url":null,"abstract":"<div><p>Non-coding genomic variants constitute the majority of trait-associated genome variations; however, the identification of functional non-coding variants is still a challenge in human genetics, and a method for systematically assessing the impact of regulatory variants on gene expression and linking these regulatory variants to potential target genes is still lacking. Here, we introduce a deep neural network (DNN)-based computational framework, RegVar, which can accurately predict the tissue-specific impact of non-coding regulatory variants on target genes. We show that by robustly learning the genomic characteristics of massive variant–gene expression associations in a variety of human tissues, RegVar vastly surpasses all current non-coding variant prioritization methods in predicting regulatory variants under different circumstances. The unique features of RegVar make it an excellent framework for assessing the regulatory impact of any variant on its putative target genes in a variety of tissues. RegVar is available as a web server at <span>https://regvar.omic.tech/</span><svg><path></path></svg>.</p></div>","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":"21 2","pages":"Pages 385-395"},"PeriodicalIF":11.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RegVar: Tissue-specific Prioritization of Non-coding Regulatory Variants\",\"authors\":\"Hao Lu,&nbsp;Luyu Ma,&nbsp;Cheng Quan,&nbsp;Lei Li,&nbsp;Yiming Lu,&nbsp;Gangqiao Zhou,&nbsp;Chenggang Zhang\",\"doi\":\"10.1016/j.gpb.2021.08.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Non-coding genomic variants constitute the majority of trait-associated genome variations; however, the identification of functional non-coding variants is still a challenge in human genetics, and a method for systematically assessing the impact of regulatory variants on gene expression and linking these regulatory variants to potential target genes is still lacking. Here, we introduce a deep neural network (DNN)-based computational framework, RegVar, which can accurately predict the tissue-specific impact of non-coding regulatory variants on target genes. We show that by robustly learning the genomic characteristics of massive variant–gene expression associations in a variety of human tissues, RegVar vastly surpasses all current non-coding variant prioritization methods in predicting regulatory variants under different circumstances. The unique features of RegVar make it an excellent framework for assessing the regulatory impact of any variant on its putative target genes in a variety of tissues. RegVar is available as a web server at <span>https://regvar.omic.tech/</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":12528,\"journal\":{\"name\":\"Genomics, Proteomics & Bioinformatics\",\"volume\":\"21 2\",\"pages\":\"Pages 385-395\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics, Proteomics & Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1672022921002564\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, Proteomics & Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672022921002564","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

非编码基因组变异构成了大多数与性状相关的基因组变异;然而,功能性非编码变异体的鉴定在人类遗传学中仍然是一个挑战,并且仍然缺乏系统评估调节变异体对基因表达的影响并将这些调节变异体与潜在靶基因联系起来的方法。在这里,我们介绍了一种基于深度神经网络(DNN)的计算框架RegVar,它可以准确预测非编码调控变体对靶基因的组织特异性影响。我们表明,通过有力地学习各种人类组织中大量变异基因表达关联的基因组特征,RegVar在预测不同情况下的调节变异方面大大超过了目前所有的非编码变异优先方法。RegVar的独特特征使其成为评估任何变体对其在各种组织中假定的靶基因的调节影响的极好框架。RegVar可作为web服务器在https://regvar.omic.tech/.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RegVar: Tissue-specific Prioritization of Non-coding Regulatory Variants

Non-coding genomic variants constitute the majority of trait-associated genome variations; however, the identification of functional non-coding variants is still a challenge in human genetics, and a method for systematically assessing the impact of regulatory variants on gene expression and linking these regulatory variants to potential target genes is still lacking. Here, we introduce a deep neural network (DNN)-based computational framework, RegVar, which can accurately predict the tissue-specific impact of non-coding regulatory variants on target genes. We show that by robustly learning the genomic characteristics of massive variant–gene expression associations in a variety of human tissues, RegVar vastly surpasses all current non-coding variant prioritization methods in predicting regulatory variants under different circumstances. The unique features of RegVar make it an excellent framework for assessing the regulatory impact of any variant on its putative target genes in a variety of tissues. RegVar is available as a web server at https://regvar.omic.tech/.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genomics, Proteomics & Bioinformatics
Genomics, Proteomics & Bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
14.30
自引率
4.20%
发文量
844
审稿时长
61 days
期刊介绍: Genomics, Proteomics and Bioinformatics (GPB) is the official journal of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. It aims to disseminate new developments in the field of omics and bioinformatics, publish high-quality discoveries quickly, and promote open access and online publication. GPB welcomes submissions in all areas of life science, biology, and biomedicine, with a focus on large data acquisition, analysis, and curation. Manuscripts covering omics and related bioinformatics topics are particularly encouraged. GPB is indexed/abstracted by PubMed/MEDLINE, PubMed Central, Scopus, BIOSIS Previews, Chemical Abstracts, CSCD, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信