树突能:微管和肌动蛋白细胞骨架参与稳定结构之间移动载体的走走停停运动。

IF 3.6 3区 生物学 Q3 CELL BIOLOGY
Traffic Pub Date : 2022-03-01 Epub Date: 2022-02-02 DOI:10.1111/tra.12832
María de Los Ángeles Juricic Urzúa, Javiera Gallardo Rojas, Andrés Couve Correa, Mauricio Cerda, Steffen Härtel Gründler, Carolina González-Silva
{"title":"树突能:微管和肌动蛋白细胞骨架参与稳定结构之间移动载体的走走停停运动。","authors":"María de Los Ángeles Juricic Urzúa,&nbsp;Javiera Gallardo Rojas,&nbsp;Andrés Couve Correa,&nbsp;Mauricio Cerda,&nbsp;Steffen Härtel Gründler,&nbsp;Carolina González-Silva","doi":"10.1111/tra.12832","DOIUrl":null,"url":null,"abstract":"<p><p>The endoplasmic reticulum (ER)-to-Golgi intermediate compartment (ERGIC) is a membranous organelle that mediates protein transport between the ER and the Golgi apparatus. In neurons, clusters of these vesiculotubular structures are situated throughout the cell in proximity to the ER, passing cargo to the cis-Golgi cisternae, located mainly in the perinuclear region. Although ERGIC markers have been identified in neurons, the distribution and dynamics of neuronal ERGIC structures have not been characterized yet. Here, we show that long-distance ERGIC transport occurs via an intermittent mechanism in dendrites, with mobile elements moving between stationary structures. Slow and fast live-cell imaging have captured stable ERGIC structures remaining in place over long periods of time, as well as mobile ERGIC structures advancing very short distances along dendrites. These short distances have been consistent with the lengths between the stationary ERGIC structures. Kymography revealed ERGIC elements that moved intermittently, emerging from and fusing with stationary ERGIC structures. Interestingly, this movement apparently depends not only on the integrity of the microtubule cytoskeleton, as previously reported, but on the actin cytoskeleton as well. Our results indicate that the dendritic ERGIC has a dual nature, with both stationary and mobile structures. The neural ERGIC network transports proteins via a stop-and-go movement in which both the microtubule and the actin cytoskeletons participate.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The dendritic ERGIC: Microtubule and actin cytoskeletons participate in stop-and-go movement of mobile carriers between stable structures.\",\"authors\":\"María de Los Ángeles Juricic Urzúa,&nbsp;Javiera Gallardo Rojas,&nbsp;Andrés Couve Correa,&nbsp;Mauricio Cerda,&nbsp;Steffen Härtel Gründler,&nbsp;Carolina González-Silva\",\"doi\":\"10.1111/tra.12832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The endoplasmic reticulum (ER)-to-Golgi intermediate compartment (ERGIC) is a membranous organelle that mediates protein transport between the ER and the Golgi apparatus. In neurons, clusters of these vesiculotubular structures are situated throughout the cell in proximity to the ER, passing cargo to the cis-Golgi cisternae, located mainly in the perinuclear region. Although ERGIC markers have been identified in neurons, the distribution and dynamics of neuronal ERGIC structures have not been characterized yet. Here, we show that long-distance ERGIC transport occurs via an intermittent mechanism in dendrites, with mobile elements moving between stationary structures. Slow and fast live-cell imaging have captured stable ERGIC structures remaining in place over long periods of time, as well as mobile ERGIC structures advancing very short distances along dendrites. These short distances have been consistent with the lengths between the stationary ERGIC structures. Kymography revealed ERGIC elements that moved intermittently, emerging from and fusing with stationary ERGIC structures. Interestingly, this movement apparently depends not only on the integrity of the microtubule cytoskeleton, as previously reported, but on the actin cytoskeleton as well. Our results indicate that the dendritic ERGIC has a dual nature, with both stationary and mobile structures. The neural ERGIC network transports proteins via a stop-and-go movement in which both the microtubule and the actin cytoskeletons participate.</p>\",\"PeriodicalId\":23207,\"journal\":{\"name\":\"Traffic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Traffic\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/tra.12832\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traffic","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/tra.12832","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

内质网-高尔基体间室(ERGIC)是一种介导内质网和高尔基体之间蛋白质转运的膜细胞器。在神经元中,这些囊泡管状结构的簇位于靠近内质网的整个细胞中,将货物传递到主要位于核周区域的顺式高尔基池。虽然已经在神经元中发现了ERGIC标记物,但神经元ERGIC结构的分布和动态尚未被表征。在这里,我们发现长距离ERGIC传输通过树突中的间歇性机制发生,移动元件在固定结构之间移动。慢速和快速的活细胞成像捕捉到了长时间保持在原位的稳定ERGIC结构,以及沿着树突移动的极短距离的ERGIC结构。这些较短的距离与固定ERGIC结构之间的长度一致。心电图显示间歇性移动的ERGIC元素,从静止的ERGIC结构中出现并融合。有趣的是,这种运动显然不仅取决于微管细胞骨架的完整性,也取决于肌动蛋白细胞骨架。我们的研究结果表明,树突ERGIC具有双重性,既具有固定结构又具有移动结构。神经ERGIC网络通过微管和肌动蛋白细胞骨架参与的走走停停运动来运输蛋白质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The dendritic ERGIC: Microtubule and actin cytoskeletons participate in stop-and-go movement of mobile carriers between stable structures.

The endoplasmic reticulum (ER)-to-Golgi intermediate compartment (ERGIC) is a membranous organelle that mediates protein transport between the ER and the Golgi apparatus. In neurons, clusters of these vesiculotubular structures are situated throughout the cell in proximity to the ER, passing cargo to the cis-Golgi cisternae, located mainly in the perinuclear region. Although ERGIC markers have been identified in neurons, the distribution and dynamics of neuronal ERGIC structures have not been characterized yet. Here, we show that long-distance ERGIC transport occurs via an intermittent mechanism in dendrites, with mobile elements moving between stationary structures. Slow and fast live-cell imaging have captured stable ERGIC structures remaining in place over long periods of time, as well as mobile ERGIC structures advancing very short distances along dendrites. These short distances have been consistent with the lengths between the stationary ERGIC structures. Kymography revealed ERGIC elements that moved intermittently, emerging from and fusing with stationary ERGIC structures. Interestingly, this movement apparently depends not only on the integrity of the microtubule cytoskeleton, as previously reported, but on the actin cytoskeleton as well. Our results indicate that the dendritic ERGIC has a dual nature, with both stationary and mobile structures. The neural ERGIC network transports proteins via a stop-and-go movement in which both the microtubule and the actin cytoskeletons participate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Traffic
Traffic 生物-细胞生物学
CiteScore
8.10
自引率
2.20%
发文量
50
审稿时长
2 months
期刊介绍: Traffic encourages and facilitates the publication of papers in any field relating to intracellular transport in health and disease. Traffic papers span disciplines such as developmental biology, neuroscience, innate and adaptive immunity, epithelial cell biology, intracellular pathogens and host-pathogen interactions, among others using any eukaryotic model system. Areas of particular interest include protein, nucleic acid and lipid traffic, molecular motors, intracellular pathogens, intracellular proteolysis, nuclear import and export, cytokinesis and the cell cycle, the interface between signaling and trafficking or localization, protein translocation, the cell biology of adaptive an innate immunity, organelle biogenesis, metabolism, cell polarity and organization, and organelle movement. All aspects of the structural, molecular biology, biochemistry, genetics, morphology, intracellular signaling and relationship to hereditary or infectious diseases will be covered. Manuscripts must provide a clear conceptual or mechanistic advance. The editors will reject papers that require major changes, including addition of significant experimental data or other significant revision. Traffic will consider manuscripts of any length, but encourages authors to limit their papers to 16 typeset pages or less.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信