紧凑同质 Leviflat CR-manifolds。

Complex analysis and its synergies Pub Date : 2021-01-01 Epub Date: 2021-07-15 DOI:10.1007/s40627-021-00083-y
A R Al-Abdallah, B Gilligan
{"title":"紧凑同质 Leviflat CR-manifolds。","authors":"A R Al-Abdallah, B Gilligan","doi":"10.1007/s40627-021-00083-y","DOIUrl":null,"url":null,"abstract":"<p><p>We consider compact Leviflat homogeneous Cauchy-Riemann (CR) manifolds. In this setting, the Levi-foliation exists and we show that all its leaves are homogeneous and biholomorphic. We analyze separately the structure of orbits in complex projective spaces and parallelizable homogeneous CR-manifolds in our context and then combine the projective and parallelizable cases. In codimensions one and two, we also give a classification.</p>","PeriodicalId":87237,"journal":{"name":"Complex analysis and its synergies","volume":"7 3-4","pages":"25"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550170/pdf/","citationCount":"0","resultStr":"{\"title\":\"Compact homogeneous Leviflat CR-manifolds.\",\"authors\":\"A R Al-Abdallah, B Gilligan\",\"doi\":\"10.1007/s40627-021-00083-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider compact Leviflat homogeneous Cauchy-Riemann (CR) manifolds. In this setting, the Levi-foliation exists and we show that all its leaves are homogeneous and biholomorphic. We analyze separately the structure of orbits in complex projective spaces and parallelizable homogeneous CR-manifolds in our context and then combine the projective and parallelizable cases. In codimensions one and two, we also give a classification.</p>\",\"PeriodicalId\":87237,\"journal\":{\"name\":\"Complex analysis and its synergies\",\"volume\":\"7 3-4\",\"pages\":\"25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550170/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex analysis and its synergies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40627-021-00083-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/7/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex analysis and its synergies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40627-021-00083-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑紧凑的 Leviflat 同质 Cauchy-Riemann (CR) 流形。在这种情况下,Levi-foliation 是存在的,而且我们证明了它的所有叶子都是同质和双全形的。我们分别分析了复杂射影空间和可平行同质 CR 流形中轨道的结构,然后将射影和可平行两种情况结合起来。我们还给出了同维一和同维二的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Compact homogeneous Leviflat CR-manifolds.

Compact homogeneous Leviflat CR-manifolds.

We consider compact Leviflat homogeneous Cauchy-Riemann (CR) manifolds. In this setting, the Levi-foliation exists and we show that all its leaves are homogeneous and biholomorphic. We analyze separately the structure of orbits in complex projective spaces and parallelizable homogeneous CR-manifolds in our context and then combine the projective and parallelizable cases. In codimensions one and two, we also give a classification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信