恶臭假单胞菌NOR门的自动设计与实现。

IF 2.6 Q2 BIOCHEMICAL RESEARCH METHODS
Synthetic biology (Oxford, England) Pub Date : 2021-09-01 eCollection Date: 2021-01-01 DOI:10.1093/synbio/ysab024
Huseyin Tas, Lewis Grozinger, Angel Goñi-Moreno, Victor de Lorenzo
{"title":"恶臭假单胞菌NOR门的自动设计与实现。","authors":"Huseyin Tas,&nbsp;Lewis Grozinger,&nbsp;Angel Goñi-Moreno,&nbsp;Victor de Lorenzo","doi":"10.1093/synbio/ysab024","DOIUrl":null,"url":null,"abstract":"<p><p>Boolean NOR gates have been widely implemented in <i>Escherichia coli</i> as transcriptional regulatory devices for building complex genetic circuits. Yet, their portability to other bacterial hosts/chassis is generally hampered by frequent changes in the parameters of the INPUT/OUTPUT response functions brought about by new genetic and biochemical contexts. Here, we have used the circuit design tool CELLO for assembling a NOR gate in the soil bacterium and the metabolic engineering platform <i>Pseudomonas putida</i> with components tailored for <i>E. coli.</i> To this end, we capitalized on the functional parameters of 20 genetic inverters for each host and the resulting compatibility between NOT pairs. Moreover, we added to the gate library three inducible promoters that are specific to <i>P. putida</i>, thus expanding cross-platform assembly options. While the number of potential connectable inverters decreased drastically when moving the library from <i>E. coli</i> to <i>P. putida</i>, the CELLO software was still able to find an effective NOR gate in the new chassis. The automated generation of the corresponding DNA sequence and <i>in vivo</i> experimental verification accredited that some genetic modules initially optimized for <i>E. coli</i> can indeed be reused to deliver NOR logic in <i>P. putida</i> as well. Furthermore, the results highlight the value of creating host-specific collections of well-characterized regulatory inverters for the quick assembly of genetic circuits to meet complex specifications.</p>","PeriodicalId":74902,"journal":{"name":"Synthetic biology (Oxford, England)","volume":" ","pages":"ysab024"},"PeriodicalIF":2.6000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ff/5e/ysab024.PMC8546601.pdf","citationCount":"11","resultStr":"{\"title\":\"Automated design and implementation of a NOR gate in Pseudomonas putida.\",\"authors\":\"Huseyin Tas,&nbsp;Lewis Grozinger,&nbsp;Angel Goñi-Moreno,&nbsp;Victor de Lorenzo\",\"doi\":\"10.1093/synbio/ysab024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Boolean NOR gates have been widely implemented in <i>Escherichia coli</i> as transcriptional regulatory devices for building complex genetic circuits. Yet, their portability to other bacterial hosts/chassis is generally hampered by frequent changes in the parameters of the INPUT/OUTPUT response functions brought about by new genetic and biochemical contexts. Here, we have used the circuit design tool CELLO for assembling a NOR gate in the soil bacterium and the metabolic engineering platform <i>Pseudomonas putida</i> with components tailored for <i>E. coli.</i> To this end, we capitalized on the functional parameters of 20 genetic inverters for each host and the resulting compatibility between NOT pairs. Moreover, we added to the gate library three inducible promoters that are specific to <i>P. putida</i>, thus expanding cross-platform assembly options. While the number of potential connectable inverters decreased drastically when moving the library from <i>E. coli</i> to <i>P. putida</i>, the CELLO software was still able to find an effective NOR gate in the new chassis. The automated generation of the corresponding DNA sequence and <i>in vivo</i> experimental verification accredited that some genetic modules initially optimized for <i>E. coli</i> can indeed be reused to deliver NOR logic in <i>P. putida</i> as well. Furthermore, the results highlight the value of creating host-specific collections of well-characterized regulatory inverters for the quick assembly of genetic circuits to meet complex specifications.</p>\",\"PeriodicalId\":74902,\"journal\":{\"name\":\"Synthetic biology (Oxford, England)\",\"volume\":\" \",\"pages\":\"ysab024\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ff/5e/ysab024.PMC8546601.pdf\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic biology (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/synbio/ysab024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic biology (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/synbio/ysab024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 11

摘要

布尔NOR门在大肠杆菌中广泛应用,作为构建复杂遗传电路的转录调控装置。然而,它们在其他细菌宿主/底盘上的可移植性通常受到新的遗传和生化环境带来的INPUT/OUTPUT响应函数参数频繁变化的阻碍。在这里,我们使用电路设计工具CELLO在土壤细菌和代谢工程平台恶臭假单胞菌中组装了一个NOR门,并为大肠杆菌定制了组件。为此,我们利用了每个宿主的20个遗传逆变器的功能参数以及由此产生的非对之间的兼容性。此外,我们在门库中增加了三个特异于p.p putida的诱导启动子,从而扩展了跨平台组装选项。当将文库从大肠杆菌转移到恶臭杆菌时,虽然潜在可连接逆变器的数量急剧减少,但CELLO软件仍然能够在新机箱中找到有效的NOR门。相应DNA序列的自动生成和体内实验验证表明,最初为大肠杆菌优化的一些遗传模块确实可以在恶臭杆菌中重复使用,以传递NOR逻辑。此外,研究结果强调了创建宿主特定的具有良好特征的调控逆变器集合的价值,可以快速组装遗传电路以满足复杂的规格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Automated design and implementation of a NOR gate in Pseudomonas putida.

Automated design and implementation of a NOR gate in Pseudomonas putida.

Automated design and implementation of a NOR gate in Pseudomonas putida.

Automated design and implementation of a NOR gate in Pseudomonas putida.

Boolean NOR gates have been widely implemented in Escherichia coli as transcriptional regulatory devices for building complex genetic circuits. Yet, their portability to other bacterial hosts/chassis is generally hampered by frequent changes in the parameters of the INPUT/OUTPUT response functions brought about by new genetic and biochemical contexts. Here, we have used the circuit design tool CELLO for assembling a NOR gate in the soil bacterium and the metabolic engineering platform Pseudomonas putida with components tailored for E. coli. To this end, we capitalized on the functional parameters of 20 genetic inverters for each host and the resulting compatibility between NOT pairs. Moreover, we added to the gate library three inducible promoters that are specific to P. putida, thus expanding cross-platform assembly options. While the number of potential connectable inverters decreased drastically when moving the library from E. coli to P. putida, the CELLO software was still able to find an effective NOR gate in the new chassis. The automated generation of the corresponding DNA sequence and in vivo experimental verification accredited that some genetic modules initially optimized for E. coli can indeed be reused to deliver NOR logic in P. putida as well. Furthermore, the results highlight the value of creating host-specific collections of well-characterized regulatory inverters for the quick assembly of genetic circuits to meet complex specifications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信