{"title":"基于CEEMD和改进粒子群优化LSSVM的血糖浓度预测。","authors":"Gao Ping, Yan Lei","doi":"10.1615/CritRevBiomedEng.2021038397","DOIUrl":null,"url":null,"abstract":"<p><p>Aiming at the difficulty of accurate prediction due to the randomness and nonstationary nature of blood glucose concentration series, a blood glucose concentration prediction model based on complementary ensemble empirical mode decomposition (CEEMD) and least squares support vector machine (LSSVM) is proposed. Firstly, CEEMD is used to convert the blood glucose concentration sequence into a series of intrinsic mode functions (IMFs) to reduce the impact of randomness and nonstationary signals on prediction performance. Then, a LSSVM prediction model is established for each mode IMF. The comprehensive learning particle swarm optimization (CLPSO) algorithm is used to optimize the kernel parameters of LSSVM. Finally, the prediction results of all IMFs are superimposed to yield the final blood glucose concentration prediction value. The experimental results show that the proposed prediction model has higher prediction accuracy in short-term blood glucose concentration values.</p>","PeriodicalId":53679,"journal":{"name":"Critical Reviews in Biomedical Engineering","volume":"49 2","pages":"9-19"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prediction of Blood Glucose Concentration Based on CEEMD and Improved Particle Swarm Optimization LSSVM.\",\"authors\":\"Gao Ping, Yan Lei\",\"doi\":\"10.1615/CritRevBiomedEng.2021038397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aiming at the difficulty of accurate prediction due to the randomness and nonstationary nature of blood glucose concentration series, a blood glucose concentration prediction model based on complementary ensemble empirical mode decomposition (CEEMD) and least squares support vector machine (LSSVM) is proposed. Firstly, CEEMD is used to convert the blood glucose concentration sequence into a series of intrinsic mode functions (IMFs) to reduce the impact of randomness and nonstationary signals on prediction performance. Then, a LSSVM prediction model is established for each mode IMF. The comprehensive learning particle swarm optimization (CLPSO) algorithm is used to optimize the kernel parameters of LSSVM. Finally, the prediction results of all IMFs are superimposed to yield the final blood glucose concentration prediction value. The experimental results show that the proposed prediction model has higher prediction accuracy in short-term blood glucose concentration values.</p>\",\"PeriodicalId\":53679,\"journal\":{\"name\":\"Critical Reviews in Biomedical Engineering\",\"volume\":\"49 2\",\"pages\":\"9-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevBiomedEng.2021038397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevBiomedEng.2021038397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Prediction of Blood Glucose Concentration Based on CEEMD and Improved Particle Swarm Optimization LSSVM.
Aiming at the difficulty of accurate prediction due to the randomness and nonstationary nature of blood glucose concentration series, a blood glucose concentration prediction model based on complementary ensemble empirical mode decomposition (CEEMD) and least squares support vector machine (LSSVM) is proposed. Firstly, CEEMD is used to convert the blood glucose concentration sequence into a series of intrinsic mode functions (IMFs) to reduce the impact of randomness and nonstationary signals on prediction performance. Then, a LSSVM prediction model is established for each mode IMF. The comprehensive learning particle swarm optimization (CLPSO) algorithm is used to optimize the kernel parameters of LSSVM. Finally, the prediction results of all IMFs are superimposed to yield the final blood glucose concentration prediction value. The experimental results show that the proposed prediction model has higher prediction accuracy in short-term blood glucose concentration values.
期刊介绍:
Biomedical engineering has been characterized as the application of concepts drawn from engineering, computing, communications, mathematics, and the physical sciences to scientific and applied problems in the field of medicine and biology. Concepts and methodologies in biomedical engineering extend throughout the medical and biological sciences. This journal attempts to critically review a wide range of research and applied activities in the field. More often than not, topics chosen for inclusion are concerned with research and practice issues of current interest. Experts writing each review bring together current knowledge and historical information that has led to the current state-of-the-art.