{"title":"个体在顺应性识别中的表现受到皮肤力学的约束,但在主动控制下得到改善。","authors":"Chang Xu, Yuxiang Wang, Gregory J Gerling","doi":"10.1109/whc49131.2021.9517269","DOIUrl":null,"url":null,"abstract":"<p><p>Tactile acuity differs between individuals, likely a function of several interrelated factors. The extent of the impact of skin mechanics on individual differences is unclear. Herein, we investigate if differences in skin elasticity between individuals impact their ability to distinguish compliant spheres near limits of discriminability. After characterizing hyperelastic material properties of their skin in compression, the participants were asked to discriminate spheres varying in elasticity and curvature, which generate non-distinct cutaneous cues. Simultaneous biomechanical measurements were used to dissociate the relative contributions from skin mechanics and volitional movements in modulating individuals' tactile sensitivity. The results indicate that, in passive touch, individuals with softer skin exhibit larger gross contact areas and higher perceptual acuity. In contrast, in active touch, where exploratory movements are behaviorally controlled, individuals with harder skin evoke relatively larger gross contact areas, which improve and compensate for deficits in their acuity as observed in passive touch. Indeed, these participants exhibit active control of their fingertip movements that improves their acuity, amidst the inherent constraints of their less elastic finger pad skin.</p>","PeriodicalId":75335,"journal":{"name":"World Haptics Conference. World Haptics Conference","volume":" ","pages":"445-450"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763326/pdf/nihms-1736914.pdf","citationCount":"7","resultStr":"{\"title\":\"Individual Performance in Compliance Discrimination is Constrained by Skin Mechanics but Improved under Active Control.\",\"authors\":\"Chang Xu, Yuxiang Wang, Gregory J Gerling\",\"doi\":\"10.1109/whc49131.2021.9517269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tactile acuity differs between individuals, likely a function of several interrelated factors. The extent of the impact of skin mechanics on individual differences is unclear. Herein, we investigate if differences in skin elasticity between individuals impact their ability to distinguish compliant spheres near limits of discriminability. After characterizing hyperelastic material properties of their skin in compression, the participants were asked to discriminate spheres varying in elasticity and curvature, which generate non-distinct cutaneous cues. Simultaneous biomechanical measurements were used to dissociate the relative contributions from skin mechanics and volitional movements in modulating individuals' tactile sensitivity. The results indicate that, in passive touch, individuals with softer skin exhibit larger gross contact areas and higher perceptual acuity. In contrast, in active touch, where exploratory movements are behaviorally controlled, individuals with harder skin evoke relatively larger gross contact areas, which improve and compensate for deficits in their acuity as observed in passive touch. Indeed, these participants exhibit active control of their fingertip movements that improves their acuity, amidst the inherent constraints of their less elastic finger pad skin.</p>\",\"PeriodicalId\":75335,\"journal\":{\"name\":\"World Haptics Conference. World Haptics Conference\",\"volume\":\" \",\"pages\":\"445-450\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8763326/pdf/nihms-1736914.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Haptics Conference. World Haptics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/whc49131.2021.9517269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/8/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Haptics Conference. World Haptics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/whc49131.2021.9517269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Individual Performance in Compliance Discrimination is Constrained by Skin Mechanics but Improved under Active Control.
Tactile acuity differs between individuals, likely a function of several interrelated factors. The extent of the impact of skin mechanics on individual differences is unclear. Herein, we investigate if differences in skin elasticity between individuals impact their ability to distinguish compliant spheres near limits of discriminability. After characterizing hyperelastic material properties of their skin in compression, the participants were asked to discriminate spheres varying in elasticity and curvature, which generate non-distinct cutaneous cues. Simultaneous biomechanical measurements were used to dissociate the relative contributions from skin mechanics and volitional movements in modulating individuals' tactile sensitivity. The results indicate that, in passive touch, individuals with softer skin exhibit larger gross contact areas and higher perceptual acuity. In contrast, in active touch, where exploratory movements are behaviorally controlled, individuals with harder skin evoke relatively larger gross contact areas, which improve and compensate for deficits in their acuity as observed in passive touch. Indeed, these participants exhibit active control of their fingertip movements that improves their acuity, amidst the inherent constraints of their less elastic finger pad skin.