{"title":"植物介导纳米硒及其应用研究进展。","authors":"Jayapriya Johnson, Rajeshkumar Shanmugam, Thangavelu Lakshmi","doi":"10.47750/jptcp.2022.870","DOIUrl":null,"url":null,"abstract":"<p><p>Nanotechnology explores a variety of promising approaches in the field of biomedical sciences. For biogenesis of selenium (Se) nanoparticles different parts of a plant are used as they contain metabolites such as alkaloids, flavonoids, phenols, proteins, and other phytochemicals which act as reducing agent to produce and stabilize nanoparticles. Nanotechnology is also widely practiced in medicine, agriculture, and many other technologies. This review is focused on green synthesis and its latest developments for the fabrication of Se nanoparticles. This research article also summarizes Se nanoparticles and different plants individually and combined along with their characterizations, using techniques such as ultraviolet-visible spectroscopy, transmission electron microscopy, and scanning electron microscopy, which specified the range, shape, size, and other specifications to easily identify and explore the studies further.</p>","PeriodicalId":73904,"journal":{"name":"Journal of population therapeutics and clinical pharmacology = Journal de la therapeutique des populations et de la pharmacologie clinique","volume":"28 2","pages":"e29-e40"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A review on plant-mediated selenium nanoparticles and its applications.\",\"authors\":\"Jayapriya Johnson, Rajeshkumar Shanmugam, Thangavelu Lakshmi\",\"doi\":\"10.47750/jptcp.2022.870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanotechnology explores a variety of promising approaches in the field of biomedical sciences. For biogenesis of selenium (Se) nanoparticles different parts of a plant are used as they contain metabolites such as alkaloids, flavonoids, phenols, proteins, and other phytochemicals which act as reducing agent to produce and stabilize nanoparticles. Nanotechnology is also widely practiced in medicine, agriculture, and many other technologies. This review is focused on green synthesis and its latest developments for the fabrication of Se nanoparticles. This research article also summarizes Se nanoparticles and different plants individually and combined along with their characterizations, using techniques such as ultraviolet-visible spectroscopy, transmission electron microscopy, and scanning electron microscopy, which specified the range, shape, size, and other specifications to easily identify and explore the studies further.</p>\",\"PeriodicalId\":73904,\"journal\":{\"name\":\"Journal of population therapeutics and clinical pharmacology = Journal de la therapeutique des populations et de la pharmacologie clinique\",\"volume\":\"28 2\",\"pages\":\"e29-e40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of population therapeutics and clinical pharmacology = Journal de la therapeutique des populations et de la pharmacologie clinique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47750/jptcp.2022.870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of population therapeutics and clinical pharmacology = Journal de la therapeutique des populations et de la pharmacologie clinique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47750/jptcp.2022.870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
A review on plant-mediated selenium nanoparticles and its applications.
Nanotechnology explores a variety of promising approaches in the field of biomedical sciences. For biogenesis of selenium (Se) nanoparticles different parts of a plant are used as they contain metabolites such as alkaloids, flavonoids, phenols, proteins, and other phytochemicals which act as reducing agent to produce and stabilize nanoparticles. Nanotechnology is also widely practiced in medicine, agriculture, and many other technologies. This review is focused on green synthesis and its latest developments for the fabrication of Se nanoparticles. This research article also summarizes Se nanoparticles and different plants individually and combined along with their characterizations, using techniques such as ultraviolet-visible spectroscopy, transmission electron microscopy, and scanning electron microscopy, which specified the range, shape, size, and other specifications to easily identify and explore the studies further.