{"title":"内源性病毒突变、进化选择和遏制政策设计。","authors":"Patrick Mellacher","doi":"10.1007/s11403-021-00344-3","DOIUrl":null,"url":null,"abstract":"<p><p>How will the novel coronavirus evolve? I study a simple epidemiological model, in which mutations may change the properties of the virus and its associated disease stochastically and antigenic drifts allow new variants to partially evade immunity. I show analytically that variants with higher infectiousness, longer disease duration, and shorter latent period prove to be fitter. \"Smart\" containment policies targeting symptomatic individuals may redirect the evolution of the virus, as they give an edge to variants with a longer incubation period and a higher share of asymptomatic infections. Reduced mortality, on the other hand, does not per se prove to be an evolutionary advantage. I then implement this model as an agent-based simulation model in order to explore its aggregate dynamics. Monte Carlo simulations show that a) containment policy design has an impact on both speed and direction of viral evolution, b) the virus may circulate in the population indefinitely, provided that containment efforts are too relaxed and the propensity of the virus to escape immunity is high enough, and crucially c) that it may not be possible to distinguish between a slowly and a rapidly evolving virus by looking only at short-term epidemiological outcomes. Thus, what looks like a successful mitigation strategy in the short run, may prove to have devastating long-run effects. These results suggest that optimal containment policy must take the propensity of the virus to mutate and escape immunity into account, strengthening the case for genetic and antigenic surveillance even in the early stages of an epidemic.</p>","PeriodicalId":45479,"journal":{"name":"Journal of Economic Interaction and Coordination","volume":"17 3","pages":"801-825"},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8739737/pdf/","citationCount":"0","resultStr":"{\"title\":\"Endogenous viral mutations, evolutionary selection, and containment policy design.\",\"authors\":\"Patrick Mellacher\",\"doi\":\"10.1007/s11403-021-00344-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>How will the novel coronavirus evolve? I study a simple epidemiological model, in which mutations may change the properties of the virus and its associated disease stochastically and antigenic drifts allow new variants to partially evade immunity. I show analytically that variants with higher infectiousness, longer disease duration, and shorter latent period prove to be fitter. \\\"Smart\\\" containment policies targeting symptomatic individuals may redirect the evolution of the virus, as they give an edge to variants with a longer incubation period and a higher share of asymptomatic infections. Reduced mortality, on the other hand, does not per se prove to be an evolutionary advantage. I then implement this model as an agent-based simulation model in order to explore its aggregate dynamics. Monte Carlo simulations show that a) containment policy design has an impact on both speed and direction of viral evolution, b) the virus may circulate in the population indefinitely, provided that containment efforts are too relaxed and the propensity of the virus to escape immunity is high enough, and crucially c) that it may not be possible to distinguish between a slowly and a rapidly evolving virus by looking only at short-term epidemiological outcomes. Thus, what looks like a successful mitigation strategy in the short run, may prove to have devastating long-run effects. These results suggest that optimal containment policy must take the propensity of the virus to mutate and escape immunity into account, strengthening the case for genetic and antigenic surveillance even in the early stages of an epidemic.</p>\",\"PeriodicalId\":45479,\"journal\":{\"name\":\"Journal of Economic Interaction and Coordination\",\"volume\":\"17 3\",\"pages\":\"801-825\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8739737/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Economic Interaction and Coordination\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s11403-021-00344-3\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economic Interaction and Coordination","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s11403-021-00344-3","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
Endogenous viral mutations, evolutionary selection, and containment policy design.
How will the novel coronavirus evolve? I study a simple epidemiological model, in which mutations may change the properties of the virus and its associated disease stochastically and antigenic drifts allow new variants to partially evade immunity. I show analytically that variants with higher infectiousness, longer disease duration, and shorter latent period prove to be fitter. "Smart" containment policies targeting symptomatic individuals may redirect the evolution of the virus, as they give an edge to variants with a longer incubation period and a higher share of asymptomatic infections. Reduced mortality, on the other hand, does not per se prove to be an evolutionary advantage. I then implement this model as an agent-based simulation model in order to explore its aggregate dynamics. Monte Carlo simulations show that a) containment policy design has an impact on both speed and direction of viral evolution, b) the virus may circulate in the population indefinitely, provided that containment efforts are too relaxed and the propensity of the virus to escape immunity is high enough, and crucially c) that it may not be possible to distinguish between a slowly and a rapidly evolving virus by looking only at short-term epidemiological outcomes. Thus, what looks like a successful mitigation strategy in the short run, may prove to have devastating long-run effects. These results suggest that optimal containment policy must take the propensity of the virus to mutate and escape immunity into account, strengthening the case for genetic and antigenic surveillance even in the early stages of an epidemic.
期刊介绍:
Journal of Economic Interaction and Coordination addresses the vibrant and interdisciplinary field of agent-based approaches to economics and social sciences.
It focuses on simulating and synthesizing emergent phenomena and collective behavior in order to understand economic and social systems. Relevant topics include, but are not limited to, the following: markets as complex adaptive systems, multi-agents in economics, artificial markets with heterogeneous agents, financial markets with heterogeneous agents, theory and simulation of agent-based models, adaptive agents with artificial intelligence, interacting particle systems in economics, social and complex networks, econophysics, non-linear economic dynamics, evolutionary games, market mechanisms in distributed computing systems, experimental economics, collective decisions.
Contributions are mostly from economics, physics, computer science and related fields and are typically based on sound theoretical models and supported by experimental validation. Survey papers are also welcome.
Journal of Economic Interaction and Coordination is the official journal of the Association of Economic Science with Heterogeneous Interacting Agents.
Officially cited as: J Econ Interact Coord