[放射组学和人工智能在骨髓瘤成像中的潜力:从全身成像数据开发自动、全面、客观的骨骼分析]。

4区 医学 Q3 Medicine
Radiologe Pub Date : 2022-01-01 Epub Date: 2021-12-10 DOI:10.1007/s00117-021-00940-1
Markus Wennmann, Jacob M Murray
{"title":"[放射组学和人工智能在骨髓瘤成像中的潜力:从全身成像数据开发自动、全面、客观的骨骼分析]。","authors":"Markus Wennmann,&nbsp;Jacob M Murray","doi":"10.1007/s00117-021-00940-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Clinical/methodical issue: </strong>Multiple myeloma can affect the complete skeleton, which makes whole-body imaging necessary. With the current assessment of these complex datasets by radiologists, only a small part of the accessible information is assessed and reported.</p><p><strong>Standard radiological methods: </strong>Depending on the question and availability, computed tomography (CT), magnetic resonance imaging (MRI), or positron emission tomography (PET) is performed and the results are then visually examined by radiologists.</p><p><strong>Methodological innovations: </strong>A combination of automatic skeletal segmentation using artificial intelligence and subsequent radiomics analysis of each individual bone have the potential to provide automatic, comprehensive, and objective skeletal analyses.</p><p><strong>Performance: </strong>A few automatic skeletal segmentation algorithms for CT already show promising results. In addition, first studies indicate correlations between radiomics features of bone and bone marrow with established disease markers and therapy response.</p><p><strong>Achievements: </strong>Artificial intelligence (AI) and radiomics algorithms for automatic skeletal analysis from whole-body imaging are currently in an early phase of development.</p>","PeriodicalId":54513,"journal":{"name":"Radiologe","volume":"62 1","pages":"44-50"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"[Potential of radiomics and artificial intelligence in myeloma imaging : Development of automatic, comprehensive, objective skeletal analyses from whole-body imaging data].\",\"authors\":\"Markus Wennmann,&nbsp;Jacob M Murray\",\"doi\":\"10.1007/s00117-021-00940-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Clinical/methodical issue: </strong>Multiple myeloma can affect the complete skeleton, which makes whole-body imaging necessary. With the current assessment of these complex datasets by radiologists, only a small part of the accessible information is assessed and reported.</p><p><strong>Standard radiological methods: </strong>Depending on the question and availability, computed tomography (CT), magnetic resonance imaging (MRI), or positron emission tomography (PET) is performed and the results are then visually examined by radiologists.</p><p><strong>Methodological innovations: </strong>A combination of automatic skeletal segmentation using artificial intelligence and subsequent radiomics analysis of each individual bone have the potential to provide automatic, comprehensive, and objective skeletal analyses.</p><p><strong>Performance: </strong>A few automatic skeletal segmentation algorithms for CT already show promising results. In addition, first studies indicate correlations between radiomics features of bone and bone marrow with established disease markers and therapy response.</p><p><strong>Achievements: </strong>Artificial intelligence (AI) and radiomics algorithms for automatic skeletal analysis from whole-body imaging are currently in an early phase of development.</p>\",\"PeriodicalId\":54513,\"journal\":{\"name\":\"Radiologe\",\"volume\":\"62 1\",\"pages\":\"44-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiologe\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00117-021-00940-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/12/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologe","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00117-021-00940-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

摘要

临床/方法问题:多发性骨髓瘤可影响整个骨骼,因此需要全身成像。根据目前放射科医生对这些复杂数据集的评估,只有一小部分可获得的信息被评估和报告。标准放射学方法:根据问题和可用性,进行计算机断层扫描(CT),磁共振成像(MRI)或正电子发射断层扫描(PET),然后由放射科医生目视检查结果。方法创新:使用人工智能的自动骨骼分割和随后对每个骨骼的放射组学分析相结合,有可能提供自动,全面和客观的骨骼分析。性能:一些用于CT的自动骨骼分割算法已经显示出有希望的结果。此外,初步研究表明,骨和骨髓放射组学特征与已确定的疾病标志物和治疗反应之间存在相关性。成就:人工智能(AI)和放射组学算法用于全身成像的自动骨骼分析目前处于早期发展阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Potential of radiomics and artificial intelligence in myeloma imaging : Development of automatic, comprehensive, objective skeletal analyses from whole-body imaging data].

Clinical/methodical issue: Multiple myeloma can affect the complete skeleton, which makes whole-body imaging necessary. With the current assessment of these complex datasets by radiologists, only a small part of the accessible information is assessed and reported.

Standard radiological methods: Depending on the question and availability, computed tomography (CT), magnetic resonance imaging (MRI), or positron emission tomography (PET) is performed and the results are then visually examined by radiologists.

Methodological innovations: A combination of automatic skeletal segmentation using artificial intelligence and subsequent radiomics analysis of each individual bone have the potential to provide automatic, comprehensive, and objective skeletal analyses.

Performance: A few automatic skeletal segmentation algorithms for CT already show promising results. In addition, first studies indicate correlations between radiomics features of bone and bone marrow with established disease markers and therapy response.

Achievements: Artificial intelligence (AI) and radiomics algorithms for automatic skeletal analysis from whole-body imaging are currently in an early phase of development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiologe
Radiologe 医学-核医学
CiteScore
1.10
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Der Radiologe is an internationally recognized journal dealing with all aspects of radiology and serving the continuing medical education of radiologists in clinical and practical environments. The focus is on x-ray diagnostics, angiography computer tomography, interventional radiology, magnet resonance tomography, digital picture processing, radio oncology and nuclear medicine. Comprehensive reviews on a specific topical issue focus on providing evidenced based information on diagnostics and therapy. Freely submitted original papers allow the presentation of important clinical studies and serve the scientific exchange. Review articles under the rubric ''Continuing Medical Education'' present verified results of scientific research and their integration into daily practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信