Valentin Yurievich Skryabin, Mikhail Zastrozhin, Marco Torrado, Elena Grishina, Kristina Ryzhikova, Valery Shipitsyn, Tatiana Galaktionova, Evgeny Bryun, Dmitry Sychev
{"title":"CYP2C19*17基因多态性对酒精戒断综合征患者血浆和唾液中地西泮浓度的影响。","authors":"Valentin Yurievich Skryabin, Mikhail Zastrozhin, Marco Torrado, Elena Grishina, Kristina Ryzhikova, Valery Shipitsyn, Tatiana Galaktionova, Evgeny Bryun, Dmitry Sychev","doi":"10.1097/YPG.0000000000000306","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Diazepam is one of the most commonly prescribed tranquilizers for the therapy of alcohol withdrawal syndrome (AWS). However, diazepam therapy often turns out to be ineffective, and some patients experience dose-dependent adverse drug reactions. Previous studies have shown that the metabolism of diazepam involves the CYP2C19 isoenzyme, whose activity is highly dependent on polymorphism of the encoding gene.</p><p><strong>Objective: </strong>The study aimed to investigate the effects of CYP2C19*17 genetic polymorphisms on plasma and saliva concentrations of diazepam as well as its impact on the efficacy and safety rates of therapy in patients with AWS.</p><p><strong>Material and methods: </strong>The study was conducted on 100 Russian male patients suffering from the AWS who received diazepam injections at a dosage of 30.0 mg/day for 5 days. Genotyping was performed by real-time PCR with allele-specific hybridization. The efficacy and safety assessment was performed using psychometric scales.</p><p><strong>Results: </strong>Based on the results of the study, we revealed differences in the efficacy and safety of therapy in patients with different CYP2C19 -806C>T genotypes. Therapeutic drug monitoring revealed the statistically significant difference in the levels of diazepam plasma concentration: (CC) 251.76 (214.43; 310.61) vs. (CT+TT) 89.74 (54.18; 179.13); P = 0.003, and diazepam saliva concentration: (CC) 3.86 (3.22; 5.12) vs. (CT+TT) 0.79 (0.44; 1.56); P = 0.003.</p><p><strong>Conclusion: </strong>Our study showed the effects of CYP2C19*17 genetic polymorphisms on the efficacy and safety rates of diazepam. Furthermore, we revealed the statistically significant differences in plasma and saliva concentration levels of diazepam in patients carrying different genotypes.</p>","PeriodicalId":20734,"journal":{"name":"Psychiatric Genetics","volume":"32 2","pages":"67-73"},"PeriodicalIF":1.5000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effects of CYP2C19*17 genetic polymorphisms on plasma and saliva concentrations of diazepam in patients with alcohol withdrawal syndrome.\",\"authors\":\"Valentin Yurievich Skryabin, Mikhail Zastrozhin, Marco Torrado, Elena Grishina, Kristina Ryzhikova, Valery Shipitsyn, Tatiana Galaktionova, Evgeny Bryun, Dmitry Sychev\",\"doi\":\"10.1097/YPG.0000000000000306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Diazepam is one of the most commonly prescribed tranquilizers for the therapy of alcohol withdrawal syndrome (AWS). However, diazepam therapy often turns out to be ineffective, and some patients experience dose-dependent adverse drug reactions. Previous studies have shown that the metabolism of diazepam involves the CYP2C19 isoenzyme, whose activity is highly dependent on polymorphism of the encoding gene.</p><p><strong>Objective: </strong>The study aimed to investigate the effects of CYP2C19*17 genetic polymorphisms on plasma and saliva concentrations of diazepam as well as its impact on the efficacy and safety rates of therapy in patients with AWS.</p><p><strong>Material and methods: </strong>The study was conducted on 100 Russian male patients suffering from the AWS who received diazepam injections at a dosage of 30.0 mg/day for 5 days. Genotyping was performed by real-time PCR with allele-specific hybridization. The efficacy and safety assessment was performed using psychometric scales.</p><p><strong>Results: </strong>Based on the results of the study, we revealed differences in the efficacy and safety of therapy in patients with different CYP2C19 -806C>T genotypes. Therapeutic drug monitoring revealed the statistically significant difference in the levels of diazepam plasma concentration: (CC) 251.76 (214.43; 310.61) vs. (CT+TT) 89.74 (54.18; 179.13); P = 0.003, and diazepam saliva concentration: (CC) 3.86 (3.22; 5.12) vs. (CT+TT) 0.79 (0.44; 1.56); P = 0.003.</p><p><strong>Conclusion: </strong>Our study showed the effects of CYP2C19*17 genetic polymorphisms on the efficacy and safety rates of diazepam. Furthermore, we revealed the statistically significant differences in plasma and saliva concentration levels of diazepam in patients carrying different genotypes.</p>\",\"PeriodicalId\":20734,\"journal\":{\"name\":\"Psychiatric Genetics\",\"volume\":\"32 2\",\"pages\":\"67-73\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychiatric Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/YPG.0000000000000306\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychiatric Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/YPG.0000000000000306","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Effects of CYP2C19*17 genetic polymorphisms on plasma and saliva concentrations of diazepam in patients with alcohol withdrawal syndrome.
Introduction: Diazepam is one of the most commonly prescribed tranquilizers for the therapy of alcohol withdrawal syndrome (AWS). However, diazepam therapy often turns out to be ineffective, and some patients experience dose-dependent adverse drug reactions. Previous studies have shown that the metabolism of diazepam involves the CYP2C19 isoenzyme, whose activity is highly dependent on polymorphism of the encoding gene.
Objective: The study aimed to investigate the effects of CYP2C19*17 genetic polymorphisms on plasma and saliva concentrations of diazepam as well as its impact on the efficacy and safety rates of therapy in patients with AWS.
Material and methods: The study was conducted on 100 Russian male patients suffering from the AWS who received diazepam injections at a dosage of 30.0 mg/day for 5 days. Genotyping was performed by real-time PCR with allele-specific hybridization. The efficacy and safety assessment was performed using psychometric scales.
Results: Based on the results of the study, we revealed differences in the efficacy and safety of therapy in patients with different CYP2C19 -806C>T genotypes. Therapeutic drug monitoring revealed the statistically significant difference in the levels of diazepam plasma concentration: (CC) 251.76 (214.43; 310.61) vs. (CT+TT) 89.74 (54.18; 179.13); P = 0.003, and diazepam saliva concentration: (CC) 3.86 (3.22; 5.12) vs. (CT+TT) 0.79 (0.44; 1.56); P = 0.003.
Conclusion: Our study showed the effects of CYP2C19*17 genetic polymorphisms on the efficacy and safety rates of diazepam. Furthermore, we revealed the statistically significant differences in plasma and saliva concentration levels of diazepam in patients carrying different genotypes.
期刊介绍:
The journal aims to publish papers which bring together clinical observations, psychological and behavioural abnormalities and genetic data. All papers are fully refereed.
Psychiatric Genetics is also a forum for reporting new approaches to genetic research in psychiatry and neurology utilizing novel techniques or methodologies. Psychiatric Genetics publishes original Research Reports dealing with inherited factors involved in psychiatric and neurological disorders. This encompasses gene localization and chromosome markers, changes in neuronal gene expression related to psychiatric disease, linkage genetics analyses, family, twin and adoption studies, and genetically based animal models of neuropsychiatric disease. The journal covers areas such as molecular neurobiology and molecular genetics relevant to mental illness.
Reviews of the literature and Commentaries in areas of current interest will be considered for publication. Reviews and Commentaries in areas outside psychiatric genetics, but of interest and importance to Psychiatric Genetics, will also be considered.
Psychiatric Genetics also publishes Book Reviews, Brief Reports and Conference Reports.