{"title":"Circ_FURIN敲低通过海绵miR-423-5p降低多囊卵巢综合征中MTM1的表达来缓解睾酮诱导的人卵巢颗粒样肿瘤细胞紊乱。","authors":"Xia Xu, Rui Guan, Ke Gong, Huaibing Xie, Lei Shi","doi":"10.1186/s12958-022-00891-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Polycystic ovary syndrome (PCOS) is a common endocrine disorder among reproductive-age women. The mechanism by which circular RNA (circRNA) drives PCOS development remains unclear. Thus, the study is designed to explore the role of a novel circRNA, circ_FURIN, in the PCOS cell model and the underlying mechanism.</p><p><strong>Methods: </strong>PCOS cell model was established by treating human ovarian granulosa-like tumor cells (KGN) with Testosterone (TTR). RNA expressions of circ_FURIN, microRNA-423-5p (miR-423-5p) and myotubularin 1 (MTM1) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was checked by Western blot. Cell proliferation was investigated by a 5-Ethynyl-29-deoxyuridine assay, 3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry analysis for cell cycle. Apoptotic cells were quantified by flow cytometry analysis for cell apoptosis. The interplay between miR-423-5p and circ_FURIN or MTM1 was identified by dual-luciferase reporter and RNA pull-down assays.</p><p><strong>Results: </strong>Circ_FURIN and MTM1 expressions were significantly upregulated, whereas miR-423-5p was downregulated in the ovarian cortex tissues of PCOS patients and TTR-treated KGN cells compared with controls. Circ_FURIN depletion relieved TTR-induced proliferation inhibition and apoptosis promotion. Besides, knockdown of miR-423-5p, a target miRNA of circ_FURIN, rescued circ_FURIN knockdown-mediated effects under TTR treatment. MiR-423-5p remitted TTR-induced cell disorders by binding to MTM1. Moreover, circ_FURIN modulated MTM1 expression through miR-423-5p.</p><p><strong>Conclusion: </strong>Circ_FURIN silencing protected against TTR-induced dysfunction by the miR-423-5p/MTM1 pathway in human ovarian granulosa-like tumor cells.</p>","PeriodicalId":520764,"journal":{"name":"Reproductive biology and endocrinology : RB&E","volume":" ","pages":"32"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851856/pdf/","citationCount":"7","resultStr":"{\"title\":\"Circ_FURIN knockdown assuages Testosterone-induced human ovarian granulosa-like tumor cell disorders by sponging miR-423-5p to reduce MTM1 expression in polycystic ovary syndrome.\",\"authors\":\"Xia Xu, Rui Guan, Ke Gong, Huaibing Xie, Lei Shi\",\"doi\":\"10.1186/s12958-022-00891-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Polycystic ovary syndrome (PCOS) is a common endocrine disorder among reproductive-age women. The mechanism by which circular RNA (circRNA) drives PCOS development remains unclear. Thus, the study is designed to explore the role of a novel circRNA, circ_FURIN, in the PCOS cell model and the underlying mechanism.</p><p><strong>Methods: </strong>PCOS cell model was established by treating human ovarian granulosa-like tumor cells (KGN) with Testosterone (TTR). RNA expressions of circ_FURIN, microRNA-423-5p (miR-423-5p) and myotubularin 1 (MTM1) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was checked by Western blot. Cell proliferation was investigated by a 5-Ethynyl-29-deoxyuridine assay, 3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry analysis for cell cycle. Apoptotic cells were quantified by flow cytometry analysis for cell apoptosis. The interplay between miR-423-5p and circ_FURIN or MTM1 was identified by dual-luciferase reporter and RNA pull-down assays.</p><p><strong>Results: </strong>Circ_FURIN and MTM1 expressions were significantly upregulated, whereas miR-423-5p was downregulated in the ovarian cortex tissues of PCOS patients and TTR-treated KGN cells compared with controls. Circ_FURIN depletion relieved TTR-induced proliferation inhibition and apoptosis promotion. Besides, knockdown of miR-423-5p, a target miRNA of circ_FURIN, rescued circ_FURIN knockdown-mediated effects under TTR treatment. MiR-423-5p remitted TTR-induced cell disorders by binding to MTM1. Moreover, circ_FURIN modulated MTM1 expression through miR-423-5p.</p><p><strong>Conclusion: </strong>Circ_FURIN silencing protected against TTR-induced dysfunction by the miR-423-5p/MTM1 pathway in human ovarian granulosa-like tumor cells.</p>\",\"PeriodicalId\":520764,\"journal\":{\"name\":\"Reproductive biology and endocrinology : RB&E\",\"volume\":\" \",\"pages\":\"32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851856/pdf/\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproductive biology and endocrinology : RB&E\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12958-022-00891-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive biology and endocrinology : RB&E","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12958-022-00891-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Circ_FURIN knockdown assuages Testosterone-induced human ovarian granulosa-like tumor cell disorders by sponging miR-423-5p to reduce MTM1 expression in polycystic ovary syndrome.
Background: Polycystic ovary syndrome (PCOS) is a common endocrine disorder among reproductive-age women. The mechanism by which circular RNA (circRNA) drives PCOS development remains unclear. Thus, the study is designed to explore the role of a novel circRNA, circ_FURIN, in the PCOS cell model and the underlying mechanism.
Methods: PCOS cell model was established by treating human ovarian granulosa-like tumor cells (KGN) with Testosterone (TTR). RNA expressions of circ_FURIN, microRNA-423-5p (miR-423-5p) and myotubularin 1 (MTM1) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was checked by Western blot. Cell proliferation was investigated by a 5-Ethynyl-29-deoxyuridine assay, 3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry analysis for cell cycle. Apoptotic cells were quantified by flow cytometry analysis for cell apoptosis. The interplay between miR-423-5p and circ_FURIN or MTM1 was identified by dual-luciferase reporter and RNA pull-down assays.
Results: Circ_FURIN and MTM1 expressions were significantly upregulated, whereas miR-423-5p was downregulated in the ovarian cortex tissues of PCOS patients and TTR-treated KGN cells compared with controls. Circ_FURIN depletion relieved TTR-induced proliferation inhibition and apoptosis promotion. Besides, knockdown of miR-423-5p, a target miRNA of circ_FURIN, rescued circ_FURIN knockdown-mediated effects under TTR treatment. MiR-423-5p remitted TTR-induced cell disorders by binding to MTM1. Moreover, circ_FURIN modulated MTM1 expression through miR-423-5p.
Conclusion: Circ_FURIN silencing protected against TTR-induced dysfunction by the miR-423-5p/MTM1 pathway in human ovarian granulosa-like tumor cells.