Chrysanthi Voutyraki, Alexandros Choromidis, Vasiliki Theodorou, Christina Efraimoglou, Gerasimos Anagnostopoulos, Srivathsa S Magadi, Sofia Grammenoudi, Evanthia Zacharioudaki, Christos Delidakis
{"title":"he转录因子抑制分化基因促进果蝇神经肿瘤生长。","authors":"Chrysanthi Voutyraki, Alexandros Choromidis, Vasiliki Theodorou, Christina Efraimoglou, Gerasimos Anagnostopoulos, Srivathsa S Magadi, Sofia Grammenoudi, Evanthia Zacharioudaki, Christos Delidakis","doi":"10.1387/ijdb.210187cd","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neural stem cells (NSC) in divide asymmetrically to generate one cell that retains stem cell identity and another that is routed to differentiation. Prolonged mitotic activity of the NSCs gives rise to the plethora of neurons and glial cells that wire the brain and nerve cord. Genetic insults, such as excess of Notch signaling, perturb the normal NSC proliferation programs and trigger the formation of NSC hyperplasias, which can subsequently progress to malignancies. Hes proteins are crucial mediators of Notch signaling, and in the NSC context they act by repressing a cohort of early pro-differentiation transcription factors. Downregulation of these pro-differentiation factors makes NSC progeny cells susceptible to adopting an aberrant stem cell program. We have recently shown that <i>Hes</i> overexpression in <i>Drosophila</i> leads to NSC hyperplasias that progress to malignant tumours after allografting to adult hosts.</p><p><strong>Methods: </strong>We have combined genetic analysis, tissue allografting and transcriptomic approaches to address the role of <i>Hes</i> genes in NSC malignant transformation.</p><p><strong>Results: </strong>We show that the <i>E (spl)</i> genes are important mediators in the progression of Notch hyperplasias to malignancy, since allografts lacking the <i>E (spl)</i> genes grow much more slowly. We further present RNA profiling of <i>Hes</i>-induced tumours at two different stages after allografting. We find that the same cohort of differentiation-promoting transcription factors that are repressed in the primary hyperplasias continue to be downregulated after transplantation. This is accompanied by an upregulation of stress-response genes and metabolic reprogramming.</p><p><strong>Conclusions: </strong>The combination of dedifferentiation and cell physiology changes most likely drive tumour growth.</p>","PeriodicalId":50329,"journal":{"name":"International Journal of Developmental Biology","volume":"66 1-2-3","pages":"211-222"},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Repression of differentiation genes by Hes transcription factors fuels neural tumour growth in <i>Drosophila</i>.\",\"authors\":\"Chrysanthi Voutyraki, Alexandros Choromidis, Vasiliki Theodorou, Christina Efraimoglou, Gerasimos Anagnostopoulos, Srivathsa S Magadi, Sofia Grammenoudi, Evanthia Zacharioudaki, Christos Delidakis\",\"doi\":\"10.1387/ijdb.210187cd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Neural stem cells (NSC) in divide asymmetrically to generate one cell that retains stem cell identity and another that is routed to differentiation. Prolonged mitotic activity of the NSCs gives rise to the plethora of neurons and glial cells that wire the brain and nerve cord. Genetic insults, such as excess of Notch signaling, perturb the normal NSC proliferation programs and trigger the formation of NSC hyperplasias, which can subsequently progress to malignancies. Hes proteins are crucial mediators of Notch signaling, and in the NSC context they act by repressing a cohort of early pro-differentiation transcription factors. Downregulation of these pro-differentiation factors makes NSC progeny cells susceptible to adopting an aberrant stem cell program. We have recently shown that <i>Hes</i> overexpression in <i>Drosophila</i> leads to NSC hyperplasias that progress to malignant tumours after allografting to adult hosts.</p><p><strong>Methods: </strong>We have combined genetic analysis, tissue allografting and transcriptomic approaches to address the role of <i>Hes</i> genes in NSC malignant transformation.</p><p><strong>Results: </strong>We show that the <i>E (spl)</i> genes are important mediators in the progression of Notch hyperplasias to malignancy, since allografts lacking the <i>E (spl)</i> genes grow much more slowly. We further present RNA profiling of <i>Hes</i>-induced tumours at two different stages after allografting. We find that the same cohort of differentiation-promoting transcription factors that are repressed in the primary hyperplasias continue to be downregulated after transplantation. This is accompanied by an upregulation of stress-response genes and metabolic reprogramming.</p><p><strong>Conclusions: </strong>The combination of dedifferentiation and cell physiology changes most likely drive tumour growth.</p>\",\"PeriodicalId\":50329,\"journal\":{\"name\":\"International Journal of Developmental Biology\",\"volume\":\"66 1-2-3\",\"pages\":\"211-222\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Developmental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1387/ijdb.210187cd\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1387/ijdb.210187cd","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Repression of differentiation genes by Hes transcription factors fuels neural tumour growth in Drosophila.
Background: Neural stem cells (NSC) in divide asymmetrically to generate one cell that retains stem cell identity and another that is routed to differentiation. Prolonged mitotic activity of the NSCs gives rise to the plethora of neurons and glial cells that wire the brain and nerve cord. Genetic insults, such as excess of Notch signaling, perturb the normal NSC proliferation programs and trigger the formation of NSC hyperplasias, which can subsequently progress to malignancies. Hes proteins are crucial mediators of Notch signaling, and in the NSC context they act by repressing a cohort of early pro-differentiation transcription factors. Downregulation of these pro-differentiation factors makes NSC progeny cells susceptible to adopting an aberrant stem cell program. We have recently shown that Hes overexpression in Drosophila leads to NSC hyperplasias that progress to malignant tumours after allografting to adult hosts.
Methods: We have combined genetic analysis, tissue allografting and transcriptomic approaches to address the role of Hes genes in NSC malignant transformation.
Results: We show that the E (spl) genes are important mediators in the progression of Notch hyperplasias to malignancy, since allografts lacking the E (spl) genes grow much more slowly. We further present RNA profiling of Hes-induced tumours at two different stages after allografting. We find that the same cohort of differentiation-promoting transcription factors that are repressed in the primary hyperplasias continue to be downregulated after transplantation. This is accompanied by an upregulation of stress-response genes and metabolic reprogramming.
Conclusions: The combination of dedifferentiation and cell physiology changes most likely drive tumour growth.
期刊介绍:
The International Journal of Developmental Biology (ISSN: 0214-
6282) is an independent, not for profit scholarly journal, published by
scientists, for scientists. The journal publishes papers which throw
light on our understanding of animal and plant developmental mechanisms in health and disease and, in particular, research which elucidates the developmental principles underlying stem cell properties
and cancer. Technical, historical or theoretical approaches also fall
within the scope of the journal. Criteria for acceptance include scientific excellence, novelty and quality of presentation of data and illustrations. Advantages of publishing in the journal include: rapid
publication; free unlimited color reproduction; no page charges; free
publication of online supplementary material; free publication of audio
files (MP3 type); one-to-one personalized attention at all stages
during the editorial process. An easy online submission facility and an
open online access option, by means of which papers can be published without any access restrictions. In keeping with its mission, the
journal offers free online subscriptions to academic institutions in
developing countries.