漂移神经元表征:缺陷还是特征?

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, CYBERNETICS
Biological Cybernetics Pub Date : 2022-06-01 Epub Date: 2022-01-07 DOI:10.1007/s00422-021-00916-3
Paul Masset, Shanshan Qin, Jacob A Zavatone-Veth
{"title":"漂移神经元表征:缺陷还是特征?","authors":"Paul Masset,&nbsp;Shanshan Qin,&nbsp;Jacob A Zavatone-Veth","doi":"10.1007/s00422-021-00916-3","DOIUrl":null,"url":null,"abstract":"<p><p>The brain displays a remarkable ability to sustain stable memories, allowing animals to execute precise behaviors or recall stimulus associations years after they were first learned. Yet, recent long-term recording experiments have revealed that single-neuron representations continuously change over time, contravening the classical assumption that learned features remain static. How do unstable neural codes support robust perception, memories, and actions? Here, we review recent experimental evidence for such representational drift across brain areas, as well as dissections of its functional characteristics and underlying mechanisms. We emphasize theoretical proposals for how drift need not only be a form of noise for which the brain must compensate. Rather, it can emerge from computationally beneficial mechanisms in hierarchical networks performing robust probabilistic computations.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Drifting neuronal representations: Bug or feature?\",\"authors\":\"Paul Masset,&nbsp;Shanshan Qin,&nbsp;Jacob A Zavatone-Veth\",\"doi\":\"10.1007/s00422-021-00916-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The brain displays a remarkable ability to sustain stable memories, allowing animals to execute precise behaviors or recall stimulus associations years after they were first learned. Yet, recent long-term recording experiments have revealed that single-neuron representations continuously change over time, contravening the classical assumption that learned features remain static. How do unstable neural codes support robust perception, memories, and actions? Here, we review recent experimental evidence for such representational drift across brain areas, as well as dissections of its functional characteristics and underlying mechanisms. We emphasize theoretical proposals for how drift need not only be a form of noise for which the brain must compensate. Rather, it can emerge from computationally beneficial mechanisms in hierarchical networks performing robust probabilistic computations.</p>\",\"PeriodicalId\":55374,\"journal\":{\"name\":\"Biological Cybernetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Cybernetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00422-021-00916-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-021-00916-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 15

摘要

大脑显示出一种维持稳定记忆的非凡能力,使动物能够在第一次学习多年后执行精确的行为或回忆起刺激联想。然而,最近的长期记录实验表明,单个神经元的表征随着时间的推移而不断变化,这与传统的学习特征保持静态的假设相矛盾。不稳定的神经编码是如何支持强健的感知、记忆和行动的?在这里,我们回顾了最近的实验证据,这种代表性的漂移跨越大脑区域,以及解剖其功能特征和潜在的机制。我们强调的理论建议是,漂移如何不仅仅是大脑必须补偿的一种噪音形式。相反,它可以从执行鲁棒概率计算的分层网络中计算有益的机制中出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Drifting neuronal representations: Bug or feature?

The brain displays a remarkable ability to sustain stable memories, allowing animals to execute precise behaviors or recall stimulus associations years after they were first learned. Yet, recent long-term recording experiments have revealed that single-neuron representations continuously change over time, contravening the classical assumption that learned features remain static. How do unstable neural codes support robust perception, memories, and actions? Here, we review recent experimental evidence for such representational drift across brain areas, as well as dissections of its functional characteristics and underlying mechanisms. We emphasize theoretical proposals for how drift need not only be a form of noise for which the brain must compensate. Rather, it can emerge from computationally beneficial mechanisms in hierarchical networks performing robust probabilistic computations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Cybernetics
Biological Cybernetics 工程技术-计算机:控制论
CiteScore
3.50
自引率
5.30%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信