社论-光盘生物学特刊

IF 3.1 3区 医学 Q3 CELL & TISSUE ENGINEERING
A Vernengo, Z Li, S Grad
{"title":"社论-光盘生物学特刊","authors":"A Vernengo,&nbsp;Z Li,&nbsp;S Grad","doi":"10.22203/eCM.v043a01","DOIUrl":null,"url":null,"abstract":"<p><p>The intervertebral disc (IVD) has long been known as a mechanical structure responsible for spinal flexibility and load distribution, while its dysfunction is a frequent source of pain and disability. In recent years, multiple signaling pathways contributing to the regulation of the IVD homeostasis in health and disease have been discovered. At the same time, crosstalk of the IVD with adjacent tissues, immune cells, nerve cells and systemic mediators has been identified as an essential mechanism of degeneration and repair. Such discoveries open the door for the design of new therapeutic and diagnostic targets. This Disc Biology Special Issue provides an abstract of cutting-edge findings in terms of tissue regulation, therapeutic intervention and preclinical models, which will help to improve the management of IVD disorders.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":" ","pages":"1-3"},"PeriodicalIF":3.1000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Editorial - Disc Biology Special Issue\",\"authors\":\"A Vernengo,&nbsp;Z Li,&nbsp;S Grad\",\"doi\":\"10.22203/eCM.v043a01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The intervertebral disc (IVD) has long been known as a mechanical structure responsible for spinal flexibility and load distribution, while its dysfunction is a frequent source of pain and disability. In recent years, multiple signaling pathways contributing to the regulation of the IVD homeostasis in health and disease have been discovered. At the same time, crosstalk of the IVD with adjacent tissues, immune cells, nerve cells and systemic mediators has been identified as an essential mechanism of degeneration and repair. Such discoveries open the door for the design of new therapeutic and diagnostic targets. This Disc Biology Special Issue provides an abstract of cutting-edge findings in terms of tissue regulation, therapeutic intervention and preclinical models, which will help to improve the management of IVD disorders.</p>\",\"PeriodicalId\":11849,\"journal\":{\"name\":\"European cells & materials\",\"volume\":\" \",\"pages\":\"1-3\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European cells & materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.22203/eCM.v043a01\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European cells & materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22203/eCM.v043a01","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 1

摘要

椎间盘(IVD)长期以来一直被认为是负责脊柱柔韧性和负荷分布的机械结构,而其功能障碍是疼痛和残疾的常见来源。近年来,研究人员发现了多种参与健康和疾病中IVD稳态调节的信号通路。与此同时,IVD与邻近组织、免疫细胞、神经细胞和全身介质的串扰已被确定为退化和修复的重要机制。这些发现为设计新的治疗和诊断靶点打开了大门。本椎间盘生物学特刊提供了组织调节,治疗干预和临床前模型方面的前沿研究成果的摘要,这将有助于改善IVD疾病的管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Editorial - Disc Biology Special Issue

The intervertebral disc (IVD) has long been known as a mechanical structure responsible for spinal flexibility and load distribution, while its dysfunction is a frequent source of pain and disability. In recent years, multiple signaling pathways contributing to the regulation of the IVD homeostasis in health and disease have been discovered. At the same time, crosstalk of the IVD with adjacent tissues, immune cells, nerve cells and systemic mediators has been identified as an essential mechanism of degeneration and repair. Such discoveries open the door for the design of new therapeutic and diagnostic targets. This Disc Biology Special Issue provides an abstract of cutting-edge findings in terms of tissue regulation, therapeutic intervention and preclinical models, which will help to improve the management of IVD disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European cells & materials
European cells & materials 生物-材料科学:生物材料
CiteScore
6.00
自引率
6.50%
发文量
55
审稿时长
1.5 months
期刊介绍: eCM provides an interdisciplinary forum for publication of preclinical research in the musculoskeletal field (Trauma, Maxillofacial (including dental), Spine and Orthopaedics). The clinical relevance of the work must be briefly mentioned within the abstract, and in more detail in the paper. Poor abstracts which do not concisely cover the paper contents will not be sent for review. Incremental steps in research will not be entertained by eCM journal.Cross-disciplinary papers that go across our scope areas are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信