肺高压增生基因生物标志物的意义。

Animal Models and Experimental Medicine Pub Date : 2021-11-22 eCollection Date: 2021-12-01 DOI:10.1002/ame2.12191
Yi Yan, Rong Jiang, Ping Yuan, Li Wen, Xiao-Bin Pang, Zhi-Cheng Jing, Yang-Yang He, Zhi-Yan Han
{"title":"肺高压增生基因生物标志物的意义。","authors":"Yi Yan,&nbsp;Rong Jiang,&nbsp;Ping Yuan,&nbsp;Li Wen,&nbsp;Xiao-Bin Pang,&nbsp;Zhi-Cheng Jing,&nbsp;Yang-Yang He,&nbsp;Zhi-Yan Han","doi":"10.1002/ame2.12191","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective/background: </strong>Proliferation is a widely recognized trigger for pulmonary hypertension (PH), a life-threatening, progressive disorder of pulmonary blood vessels. This study was aimed to identify some proliferation associated genes/targets for better comprehension of PH pathogenesis.</p><p><strong>Methods: </strong>Human pulmonary arterial smooth muscle cells (hPASMCs) were cultured in the presence or absence of human recombinant platelet derived growth factor (rhPDGF)-BB. Cells were collected for metabolomics or transcriptomics study. Gene profiling of lungs of PH rats after hypoxia exposure or of PH patients were retrieved from GEO database.</p><p><strong>Results: </strong>90 metabolites (VIP score >1, fold change >2 or <0.5 and <i>p</i> < .05) and 2701 unique metabolism associated genes (MAGs) were identified in rhPDGF-BB treated hPASMCs compared to control cells. In addition, 1151 differentially expressed genes (313 upregulated and 838 downregulated) were identified in rhPDGF-BB treated hPASMCs compared to control cells (fold change >2 or <0.5 and <i>p</i> < .05). 152 differentially expressed MAGs were then determined, out of which 9 hub genes (IL6, CXCL8, CCL2, CXCR4, CCND1, PLAUR, PLAU, HBEGF and F3) were defined as core proliferation associated hub genes in protein proten interaction analysis. In addition, the hub gene-based LASSO model can predict the occurrence of PH (AUC = 0.88). The expression of CXCR4, as one of the hub genes, was positively correlated to immune cell infiltrates.</p><p><strong>Conclusion: </strong>Our findings revealed some key proliferation associated genes in PH, which provide the crucial information concerning complex metabolic reprogramming and inflammatory modulation in response to proliferation signals and might offer therapeutic gains for PH.</p>","PeriodicalId":7840,"journal":{"name":"Animal Models and Experimental Medicine","volume":" ","pages":"369-380"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8690983/pdf/","citationCount":"11","resultStr":"{\"title\":\"Implication of proliferation gene biomarkers in pulmonary hypertension.\",\"authors\":\"Yi Yan,&nbsp;Rong Jiang,&nbsp;Ping Yuan,&nbsp;Li Wen,&nbsp;Xiao-Bin Pang,&nbsp;Zhi-Cheng Jing,&nbsp;Yang-Yang He,&nbsp;Zhi-Yan Han\",\"doi\":\"10.1002/ame2.12191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective/background: </strong>Proliferation is a widely recognized trigger for pulmonary hypertension (PH), a life-threatening, progressive disorder of pulmonary blood vessels. This study was aimed to identify some proliferation associated genes/targets for better comprehension of PH pathogenesis.</p><p><strong>Methods: </strong>Human pulmonary arterial smooth muscle cells (hPASMCs) were cultured in the presence or absence of human recombinant platelet derived growth factor (rhPDGF)-BB. Cells were collected for metabolomics or transcriptomics study. Gene profiling of lungs of PH rats after hypoxia exposure or of PH patients were retrieved from GEO database.</p><p><strong>Results: </strong>90 metabolites (VIP score >1, fold change >2 or <0.5 and <i>p</i> < .05) and 2701 unique metabolism associated genes (MAGs) were identified in rhPDGF-BB treated hPASMCs compared to control cells. In addition, 1151 differentially expressed genes (313 upregulated and 838 downregulated) were identified in rhPDGF-BB treated hPASMCs compared to control cells (fold change >2 or <0.5 and <i>p</i> < .05). 152 differentially expressed MAGs were then determined, out of which 9 hub genes (IL6, CXCL8, CCL2, CXCR4, CCND1, PLAUR, PLAU, HBEGF and F3) were defined as core proliferation associated hub genes in protein proten interaction analysis. In addition, the hub gene-based LASSO model can predict the occurrence of PH (AUC = 0.88). The expression of CXCR4, as one of the hub genes, was positively correlated to immune cell infiltrates.</p><p><strong>Conclusion: </strong>Our findings revealed some key proliferation associated genes in PH, which provide the crucial information concerning complex metabolic reprogramming and inflammatory modulation in response to proliferation signals and might offer therapeutic gains for PH.</p>\",\"PeriodicalId\":7840,\"journal\":{\"name\":\"Animal Models and Experimental Medicine\",\"volume\":\" \",\"pages\":\"369-380\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8690983/pdf/\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Models and Experimental Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ame2.12191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Models and Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ame2.12191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

目的/背景:肺动脉高压(PH)是一种危及生命、进行性肺血管疾病,增殖是一种公认的诱因。本研究旨在确定一些与增殖相关的基因/靶点,以更好地理解PH的发病机制。方法:在存在或不存在人重组血小板衍生生长因子(rhPDGF)-BB的条件下培养人肺动脉平滑肌细胞(hPASMCs)。收集细胞用于代谢组学或转录组学研究。从GEO数据库中检索缺氧暴露后PH大鼠或PH患者肺部的基因图谱。结果:90种代谢产物(VIP评分>1,倍数变化>2或p2或p结论:我们的研究结果揭示了PH中一些关键的增殖相关基因,这些基因提供了有关复杂代谢重编程和炎症调节对增殖信号的反应的关键信息,并可能为PH提供治疗益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Implication of proliferation gene biomarkers in pulmonary hypertension.

Implication of proliferation gene biomarkers in pulmonary hypertension.

Implication of proliferation gene biomarkers in pulmonary hypertension.

Implication of proliferation gene biomarkers in pulmonary hypertension.

Objective/background: Proliferation is a widely recognized trigger for pulmonary hypertension (PH), a life-threatening, progressive disorder of pulmonary blood vessels. This study was aimed to identify some proliferation associated genes/targets for better comprehension of PH pathogenesis.

Methods: Human pulmonary arterial smooth muscle cells (hPASMCs) were cultured in the presence or absence of human recombinant platelet derived growth factor (rhPDGF)-BB. Cells were collected for metabolomics or transcriptomics study. Gene profiling of lungs of PH rats after hypoxia exposure or of PH patients were retrieved from GEO database.

Results: 90 metabolites (VIP score >1, fold change >2 or <0.5 and p < .05) and 2701 unique metabolism associated genes (MAGs) were identified in rhPDGF-BB treated hPASMCs compared to control cells. In addition, 1151 differentially expressed genes (313 upregulated and 838 downregulated) were identified in rhPDGF-BB treated hPASMCs compared to control cells (fold change >2 or <0.5 and p < .05). 152 differentially expressed MAGs were then determined, out of which 9 hub genes (IL6, CXCL8, CCL2, CXCR4, CCND1, PLAUR, PLAU, HBEGF and F3) were defined as core proliferation associated hub genes in protein proten interaction analysis. In addition, the hub gene-based LASSO model can predict the occurrence of PH (AUC = 0.88). The expression of CXCR4, as one of the hub genes, was positively correlated to immune cell infiltrates.

Conclusion: Our findings revealed some key proliferation associated genes in PH, which provide the crucial information concerning complex metabolic reprogramming and inflammatory modulation in response to proliferation signals and might offer therapeutic gains for PH.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信