通过隐马尔可夫模型分割来划分 CPAP 治疗的睡眠呼吸暂停患者的残余呼吸暂停-低通气指数轨迹,以进行个性化随访并防止治疗失败。

IF 6.5 2区 医学 Q1 Medicine
Epma Journal Pub Date : 2021-11-25 eCollection Date: 2021-12-01 DOI:10.1007/s13167-021-00264-z
Alphanie Midelet, Sébastien Bailly, Renaud Tamisier, Jean-Christian Borel, Sébastien Baillieul, Ronan Le Hy, Marie-Caroline Schaeffer, Jean-Louis Pépin
{"title":"通过隐马尔可夫模型分割来划分 CPAP 治疗的睡眠呼吸暂停患者的残余呼吸暂停-低通气指数轨迹,以进行个性化随访并防止治疗失败。","authors":"Alphanie Midelet, Sébastien Bailly, Renaud Tamisier, Jean-Christian Borel, Sébastien Baillieul, Ronan Le Hy, Marie-Caroline Schaeffer, Jean-Louis Pépin","doi":"10.1007/s13167-021-00264-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Continuous positive airway pressure (CPAP), the reference treatment for obstructive sleep apnoea (OSA), is used by millions of individuals worldwide with remote telemonitoring providing daily information on CPAP usage and efficacy, a currently underused resource. Here, we aimed to implement data science methods to provide tools for personalizing follow-up and preventing treatment failure.</p><p><strong>Methods: </strong>We analysed telemonitoring data from adults prescribed CPAP treatment. Our primary objective was to use Hidden Markov models (HMMs) to identify the underlying state of treatment efficacy and enable early detection of deterioration. Secondary goals were to identify clusters of rAHI trajectories which need distinct therapeutic strategies.</p><p><strong>Results: </strong>From telemonitoring records of 2860 CPAP-treated patients (age: 66.31 ± 12.92 years, 69.9% male), HMM estimated three states differing in variability within a given state and probability of shifting from one state to another. The daily inferred state informs on the need for a personalized action, while the sequence of states is a predictive indicator of treatment failure. Six clusters of rAHI trajectories were identified ranging from well-controlled patients (cluster 0: 669 (23%); mean rAHI 0.58 ± 0.59 events/h) to the most unstable (cluster 5: 470 (16%); mean rAHI 9.62 ± 5.62 events/h). CPAP adherence was 30 min higher in cluster 0 compared to clusters 4 and 5 (<i>P</i> value < 0.01).</p><p><strong>Conclusion: </strong>This new approach based on HMM might constitute the backbone for deployment of patient-centred CPAP management improving the personalized interpretation of telemonitoring data, identifying individuals for targeted therapy and preventing treatment failure or abandonment.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13167-021-00264-z.</p>","PeriodicalId":54292,"journal":{"name":"Epma Journal","volume":"12 4","pages":"535-544"},"PeriodicalIF":6.5000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648940/pdf/13167_2021_Article_264.pdf","citationCount":"0","resultStr":"{\"title\":\"Hidden Markov model segmentation to demarcate trajectories of residual apnoea-hypopnoea index in CPAP-treated sleep apnoea patients to personalize follow-up and prevent treatment failure.\",\"authors\":\"Alphanie Midelet, Sébastien Bailly, Renaud Tamisier, Jean-Christian Borel, Sébastien Baillieul, Ronan Le Hy, Marie-Caroline Schaeffer, Jean-Louis Pépin\",\"doi\":\"10.1007/s13167-021-00264-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Continuous positive airway pressure (CPAP), the reference treatment for obstructive sleep apnoea (OSA), is used by millions of individuals worldwide with remote telemonitoring providing daily information on CPAP usage and efficacy, a currently underused resource. Here, we aimed to implement data science methods to provide tools for personalizing follow-up and preventing treatment failure.</p><p><strong>Methods: </strong>We analysed telemonitoring data from adults prescribed CPAP treatment. Our primary objective was to use Hidden Markov models (HMMs) to identify the underlying state of treatment efficacy and enable early detection of deterioration. Secondary goals were to identify clusters of rAHI trajectories which need distinct therapeutic strategies.</p><p><strong>Results: </strong>From telemonitoring records of 2860 CPAP-treated patients (age: 66.31 ± 12.92 years, 69.9% male), HMM estimated three states differing in variability within a given state and probability of shifting from one state to another. The daily inferred state informs on the need for a personalized action, while the sequence of states is a predictive indicator of treatment failure. Six clusters of rAHI trajectories were identified ranging from well-controlled patients (cluster 0: 669 (23%); mean rAHI 0.58 ± 0.59 events/h) to the most unstable (cluster 5: 470 (16%); mean rAHI 9.62 ± 5.62 events/h). CPAP adherence was 30 min higher in cluster 0 compared to clusters 4 and 5 (<i>P</i> value < 0.01).</p><p><strong>Conclusion: </strong>This new approach based on HMM might constitute the backbone for deployment of patient-centred CPAP management improving the personalized interpretation of telemonitoring data, identifying individuals for targeted therapy and preventing treatment failure or abandonment.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13167-021-00264-z.</p>\",\"PeriodicalId\":54292,\"journal\":{\"name\":\"Epma Journal\",\"volume\":\"12 4\",\"pages\":\"535-544\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648940/pdf/13167_2021_Article_264.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epma Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13167-021-00264-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epma Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13167-021-00264-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

背景:持续气道正压疗法(CPAP)是治疗阻塞性睡眠呼吸暂停(OSA)的参考疗法,全球有数百万人使用该疗法,远程远程监测提供了有关 CPAP 使用情况和疗效的日常信息,但这一资源目前尚未得到充分利用。在此,我们旨在采用数据科学方法,为个性化随访和预防治疗失败提供工具:我们对开具 CPAP 治疗处方的成人的远程监控数据进行了分析。我们的主要目标是使用隐马尔可夫模型(HMMs)来识别治疗效果的基本状态,并及早发现治疗效果的恶化。次要目标是识别需要不同治疗策略的 rAHI 轨迹群:从 2860 名接受过 CPAP 治疗的患者(年龄:66.31 ± 12.92 岁,69.9% 为男性)的远程监控记录中,HMM 估算出了三种状态,这三种状态在给定状态内的可变性和从一种状态转变为另一种状态的概率方面存在差异。每日推断的状态可告知是否需要采取个性化行动,而状态序列则是治疗失败的预测指标。从控制良好的患者(第 0 组:669 人(23%);平均 rAHI 0.58 ± 0.59 事件/小时)到最不稳定的患者(第 5 组:470 人(16%);平均 rAHI 9.62 ± 5.62 事件/小时),共确定了六个 rAHI 轨迹群。与第 4 组和第 5 组相比,第 0 组的 CPAP 坚持时间高出 30 分钟(P 值<0.01):结论:这种基于 HMM 的新方法可能成为部署以患者为中心的 CPAP 管理的支柱,可改善对远程监测数据的个性化解读,识别需要进行针对性治疗的个体,并防止治疗失败或放弃治疗:在线版本包含补充材料,可在 10.1007/s13167-021-00264-z.上查阅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hidden Markov model segmentation to demarcate trajectories of residual apnoea-hypopnoea index in CPAP-treated sleep apnoea patients to personalize follow-up and prevent treatment failure.

Hidden Markov model segmentation to demarcate trajectories of residual apnoea-hypopnoea index in CPAP-treated sleep apnoea patients to personalize follow-up and prevent treatment failure.

Hidden Markov model segmentation to demarcate trajectories of residual apnoea-hypopnoea index in CPAP-treated sleep apnoea patients to personalize follow-up and prevent treatment failure.

Background: Continuous positive airway pressure (CPAP), the reference treatment for obstructive sleep apnoea (OSA), is used by millions of individuals worldwide with remote telemonitoring providing daily information on CPAP usage and efficacy, a currently underused resource. Here, we aimed to implement data science methods to provide tools for personalizing follow-up and preventing treatment failure.

Methods: We analysed telemonitoring data from adults prescribed CPAP treatment. Our primary objective was to use Hidden Markov models (HMMs) to identify the underlying state of treatment efficacy and enable early detection of deterioration. Secondary goals were to identify clusters of rAHI trajectories which need distinct therapeutic strategies.

Results: From telemonitoring records of 2860 CPAP-treated patients (age: 66.31 ± 12.92 years, 69.9% male), HMM estimated three states differing in variability within a given state and probability of shifting from one state to another. The daily inferred state informs on the need for a personalized action, while the sequence of states is a predictive indicator of treatment failure. Six clusters of rAHI trajectories were identified ranging from well-controlled patients (cluster 0: 669 (23%); mean rAHI 0.58 ± 0.59 events/h) to the most unstable (cluster 5: 470 (16%); mean rAHI 9.62 ± 5.62 events/h). CPAP adherence was 30 min higher in cluster 0 compared to clusters 4 and 5 (P value < 0.01).

Conclusion: This new approach based on HMM might constitute the backbone for deployment of patient-centred CPAP management improving the personalized interpretation of telemonitoring data, identifying individuals for targeted therapy and preventing treatment failure or abandonment.

Supplementary information: The online version contains supplementary material available at 10.1007/s13167-021-00264-z.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epma Journal
Epma Journal Medicine-Biochemistry (medical)
CiteScore
11.30
自引率
23.10%
发文量
0
期刊介绍: PMA Journal is a journal of predictive, preventive and personalized medicine (PPPM). The journal provides expert viewpoints and research on medical innovations and advanced healthcare using predictive diagnostics, targeted preventive measures and personalized patient treatments. The journal is indexed by PubMed, Embase and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信