使用 R 进行双样本多变量孟德尔随机分析

Current Protocols Pub Date : 2021-12-01 DOI:10.1002/cpz1.335
Danielle Rasooly, Gina M Peloso
{"title":"使用 R 进行双样本多变量孟德尔随机分析","authors":"Danielle Rasooly, Gina M Peloso","doi":"10.1002/cpz1.335","DOIUrl":null,"url":null,"abstract":"<p><p>Mendelian randomization is a framework that uses measured variation in genes for assessing and estimating the causal effect of an exposure on an outcome. Multivariable Mendelian randomization is an extension that can assess the causal effect of multiple exposures on an outcome, and can be advantageous when considering a set (>1) of potentially correlated candidate risk factors in evaluating the causal effect of each on a health outcome, accounting for measured pleiotropy. This can be seen, for example, in determining the causal effects of lipids and cholesterol on type 2 diabetes risk, where the correlated risk factors share genetic predictors. Similar to univariate Mendelian randomization, multivariable Mendelian randomization can be conducted using two-sample summary-level data where the gene-exposure and gene-outcome associations are derived from separate samples from the same underlying population. Here, we present a protocol for conducting a two-sample multivariable Mendelian randomization study using the 'MVMR' package in R and summary-level genetic data. We also provide a protocol for searching and obtaining instruments using available data sources in the 'MRInstruments' R package. Finally, we provide general guidelines and discuss the utility of performing a multivariable Mendelian randomization analysis for simultaneously assessing causality of multiple exposures. © 2021 Wiley Periodicals LLC. Basic Protocol: Performing a two-sample multivariable Mendelian randomization analysis using the 'MVMR' package in R and summarized genetic data Support Protocol 1: Installing the 'MVMR' R package Support Protocol 2: Obtaining instruments from the 'MRInstruments' R package.</p>","PeriodicalId":11174,"journal":{"name":"Current Protocols","volume":" ","pages":"e335"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8767787/pdf/nihms-1757163.pdf","citationCount":"0","resultStr":"{\"title\":\"Two-Sample Multivariable Mendelian Randomization Analysis Using R.\",\"authors\":\"Danielle Rasooly, Gina M Peloso\",\"doi\":\"10.1002/cpz1.335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mendelian randomization is a framework that uses measured variation in genes for assessing and estimating the causal effect of an exposure on an outcome. Multivariable Mendelian randomization is an extension that can assess the causal effect of multiple exposures on an outcome, and can be advantageous when considering a set (>1) of potentially correlated candidate risk factors in evaluating the causal effect of each on a health outcome, accounting for measured pleiotropy. This can be seen, for example, in determining the causal effects of lipids and cholesterol on type 2 diabetes risk, where the correlated risk factors share genetic predictors. Similar to univariate Mendelian randomization, multivariable Mendelian randomization can be conducted using two-sample summary-level data where the gene-exposure and gene-outcome associations are derived from separate samples from the same underlying population. Here, we present a protocol for conducting a two-sample multivariable Mendelian randomization study using the 'MVMR' package in R and summary-level genetic data. We also provide a protocol for searching and obtaining instruments using available data sources in the 'MRInstruments' R package. Finally, we provide general guidelines and discuss the utility of performing a multivariable Mendelian randomization analysis for simultaneously assessing causality of multiple exposures. © 2021 Wiley Periodicals LLC. Basic Protocol: Performing a two-sample multivariable Mendelian randomization analysis using the 'MVMR' package in R and summarized genetic data Support Protocol 1: Installing the 'MVMR' R package Support Protocol 2: Obtaining instruments from the 'MRInstruments' R package.</p>\",\"PeriodicalId\":11174,\"journal\":{\"name\":\"Current Protocols\",\"volume\":\" \",\"pages\":\"e335\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8767787/pdf/nihms-1757163.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/cpz1.335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cpz1.335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

孟德尔随机法是一种利用测得的基因变异来评估和估计暴露对结果的因果效应的框架。多变量孟德尔随机法是一种扩展方法,可以评估多种暴露因素对结果的因果效应,在考虑一组(大于 1 个)可能相关的候选风险因素时,可以发挥优势,评估每个风险因素对健康结果的因果效应,同时考虑测量到的多向性。例如,在确定血脂和胆固醇对 2 型糖尿病风险的因果效应时,相关风险因素具有共同的遗传预测因子。与单变量孟德尔随机化类似,多变量孟德尔随机化也可以使用双样本汇总级数据进行,其中基因-暴露和基因-结果关联来自同一基础人群的不同样本。在此,我们介绍了使用 R 软件包 "MVMR "和摘要级基因数据进行双样本多变量孟德尔随机化研究的方案。我们还提供了使用 "MRInstruments "R 软件包中的可用数据源搜索和获取工具的协议。最后,我们提供了一般指南,并讨论了进行多变量孟德尔随机分析以同时评估多种暴露因果关系的实用性。© 2021 Wiley Periodicals LLC.基本协议:使用 R 中的 "MVMR "软件包执行双样本多变量孟德尔随机分析,并汇总遗传数据 支持协议 1:安装 "MVMR "R 软件包 支持协议 2:从 "MRInstruments "R 软件包中获取工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Two-Sample Multivariable Mendelian Randomization Analysis Using R.

Two-Sample Multivariable Mendelian Randomization Analysis Using R.

Mendelian randomization is a framework that uses measured variation in genes for assessing and estimating the causal effect of an exposure on an outcome. Multivariable Mendelian randomization is an extension that can assess the causal effect of multiple exposures on an outcome, and can be advantageous when considering a set (>1) of potentially correlated candidate risk factors in evaluating the causal effect of each on a health outcome, accounting for measured pleiotropy. This can be seen, for example, in determining the causal effects of lipids and cholesterol on type 2 diabetes risk, where the correlated risk factors share genetic predictors. Similar to univariate Mendelian randomization, multivariable Mendelian randomization can be conducted using two-sample summary-level data where the gene-exposure and gene-outcome associations are derived from separate samples from the same underlying population. Here, we present a protocol for conducting a two-sample multivariable Mendelian randomization study using the 'MVMR' package in R and summary-level genetic data. We also provide a protocol for searching and obtaining instruments using available data sources in the 'MRInstruments' R package. Finally, we provide general guidelines and discuss the utility of performing a multivariable Mendelian randomization analysis for simultaneously assessing causality of multiple exposures. © 2021 Wiley Periodicals LLC. Basic Protocol: Performing a two-sample multivariable Mendelian randomization analysis using the 'MVMR' package in R and summarized genetic data Support Protocol 1: Installing the 'MVMR' R package Support Protocol 2: Obtaining instruments from the 'MRInstruments' R package.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信