基因组重排的对称包涵代数方法。

IF 0.9 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Venta Terauds, Joshua Stevenson, Jeremy Sumner
{"title":"基因组重排的对称包涵代数方法。","authors":"Venta Terauds,&nbsp;Joshua Stevenson,&nbsp;Jeremy Sumner","doi":"10.1142/S0219720021400151","DOIUrl":null,"url":null,"abstract":"<p><p>Of the many modern approaches to calculating evolutionary distance via models of genome rearrangement, most are tied to a particular set of genomic modeling assumptions and to a restricted class of allowed rearrangements. The \"position paradigm\", in which genomes are represented as permutations signifying the position (and orientation) of each region, enables a refined model-based approach, where one can select biologically plausible rearrangements and assign to them relative probabilities/costs. Here, one must further incorporate any underlying structural symmetry of the genomes into the calculations and ensure that this symmetry is reflected in the model. In our recently-introduced framework of <i>genome algebras</i>, each genome corresponds to an element that simultaneously incorporates all of its inherent physical symmetries. The representation theory of these algebras then provides a natural model of evolution via rearrangement as a Markov chain. Whilst the implementation of this framework to calculate distances for genomes with \"practical\" numbers of regions is currently computationally infeasible, we consider it to be a significant theoretical advance: one can incorporate different genomic modeling assumptions, calculate various genomic distances, and compare the results under different rearrangement models. The aim of this paper is to demonstrate some of these features.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A symmetry-inclusive algebraic approach to genome rearrangement.\",\"authors\":\"Venta Terauds,&nbsp;Joshua Stevenson,&nbsp;Jeremy Sumner\",\"doi\":\"10.1142/S0219720021400151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Of the many modern approaches to calculating evolutionary distance via models of genome rearrangement, most are tied to a particular set of genomic modeling assumptions and to a restricted class of allowed rearrangements. The \\\"position paradigm\\\", in which genomes are represented as permutations signifying the position (and orientation) of each region, enables a refined model-based approach, where one can select biologically plausible rearrangements and assign to them relative probabilities/costs. Here, one must further incorporate any underlying structural symmetry of the genomes into the calculations and ensure that this symmetry is reflected in the model. In our recently-introduced framework of <i>genome algebras</i>, each genome corresponds to an element that simultaneously incorporates all of its inherent physical symmetries. The representation theory of these algebras then provides a natural model of evolution via rearrangement as a Markov chain. Whilst the implementation of this framework to calculate distances for genomes with \\\"practical\\\" numbers of regions is currently computationally infeasible, we consider it to be a significant theoretical advance: one can incorporate different genomic modeling assumptions, calculate various genomic distances, and compare the results under different rearrangement models. The aim of this paper is to demonstrate some of these features.</p>\",\"PeriodicalId\":48910,\"journal\":{\"name\":\"Journal of Bioinformatics and Computational Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219720021400151\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/11/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720021400151","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

在许多通过基因组重排模型来计算进化距离的现代方法中,大多数都与一组特定的基因组建模假设和有限的允许重排有关。在“位置范式”中,基因组被表示为表示每个区域的位置(和方向)的排列,这使得一种基于模型的改进方法成为可能,人们可以选择生物学上合理的重排,并为它们分配相对概率/成本。在这里,人们必须进一步将任何潜在的基因组结构对称性纳入计算,并确保这种对称性在模型中得到反映。在我们最近引入的基因组代数框架中,每个基因组对应于一个元素,同时包含其所有固有的物理对称性。这些代数的表示理论然后提供了一个自然的进化模型,通过重排作为一个马尔可夫链。虽然该框架的实现计算具有“实际”区域数的基因组的距离目前在计算上是不可行的,但我们认为这是一个重要的理论进步:人们可以纳入不同的基因组建模假设,计算不同的基因组距离,并比较不同重排模型下的结果。本文的目的是演示其中的一些特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A symmetry-inclusive algebraic approach to genome rearrangement.

Of the many modern approaches to calculating evolutionary distance via models of genome rearrangement, most are tied to a particular set of genomic modeling assumptions and to a restricted class of allowed rearrangements. The "position paradigm", in which genomes are represented as permutations signifying the position (and orientation) of each region, enables a refined model-based approach, where one can select biologically plausible rearrangements and assign to them relative probabilities/costs. Here, one must further incorporate any underlying structural symmetry of the genomes into the calculations and ensure that this symmetry is reflected in the model. In our recently-introduced framework of genome algebras, each genome corresponds to an element that simultaneously incorporates all of its inherent physical symmetries. The representation theory of these algebras then provides a natural model of evolution via rearrangement as a Markov chain. Whilst the implementation of this framework to calculate distances for genomes with "practical" numbers of regions is currently computationally infeasible, we consider it to be a significant theoretical advance: one can incorporate different genomic modeling assumptions, calculate various genomic distances, and compare the results under different rearrangement models. The aim of this paper is to demonstrate some of these features.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bioinformatics and Computational Biology
Journal of Bioinformatics and Computational Biology MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
2.10
自引率
0.00%
发文量
57
期刊介绍: The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information. The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信