{"title":"自然基因组在DCJ-indel模型中的微小简约。","authors":"Daniel Doerr, Cedric Chauve","doi":"10.1142/S0219720021400096","DOIUrl":null,"url":null,"abstract":"<p><p>The Small Parsimony Problem (SPP) aims at finding the gene orders at internal nodes of a given phylogenetic tree such that the overall genome rearrangement distance along the tree branches is minimized. This problem is intractable in most genome rearrangement models, especially when gene duplication and loss are considered. In this work, we describe an Integer Linear Program algorithm to solve the SPP for natural genomes, i.e. genomes that contain conserved, unique, and duplicated markers. The evolutionary model that we consider is the DCJ-indel model that includes the Double-Cut and Join rearrangement operation and the insertion and deletion of genome segments. We evaluate our algorithm on simulated data and show that it is able to reconstruct very efficiently and accurately ancestral gene orders in a very comprehensive evolutionary model.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":"19 6","pages":"2140009"},"PeriodicalIF":0.9000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Small parsimony for natural genomes in the DCJ-indel model.\",\"authors\":\"Daniel Doerr, Cedric Chauve\",\"doi\":\"10.1142/S0219720021400096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Small Parsimony Problem (SPP) aims at finding the gene orders at internal nodes of a given phylogenetic tree such that the overall genome rearrangement distance along the tree branches is minimized. This problem is intractable in most genome rearrangement models, especially when gene duplication and loss are considered. In this work, we describe an Integer Linear Program algorithm to solve the SPP for natural genomes, i.e. genomes that contain conserved, unique, and duplicated markers. The evolutionary model that we consider is the DCJ-indel model that includes the Double-Cut and Join rearrangement operation and the insertion and deletion of genome segments. We evaluate our algorithm on simulated data and show that it is able to reconstruct very efficiently and accurately ancestral gene orders in a very comprehensive evolutionary model.</p>\",\"PeriodicalId\":48910,\"journal\":{\"name\":\"Journal of Bioinformatics and Computational Biology\",\"volume\":\"19 6\",\"pages\":\"2140009\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219720021400096\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/11/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720021400096","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Small parsimony for natural genomes in the DCJ-indel model.
The Small Parsimony Problem (SPP) aims at finding the gene orders at internal nodes of a given phylogenetic tree such that the overall genome rearrangement distance along the tree branches is minimized. This problem is intractable in most genome rearrangement models, especially when gene duplication and loss are considered. In this work, we describe an Integer Linear Program algorithm to solve the SPP for natural genomes, i.e. genomes that contain conserved, unique, and duplicated markers. The evolutionary model that we consider is the DCJ-indel model that includes the Double-Cut and Join rearrangement operation and the insertion and deletion of genome segments. We evaluate our algorithm on simulated data and show that it is able to reconstruct very efficiently and accurately ancestral gene orders in a very comprehensive evolutionary model.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.