Ana Cachau-Hansgardh, Caitlin McCleery, Manon Limousis-Gayda, Rami Hashish
{"title":"碰撞阈值冲击下自行车头盔损伤可视性分析。","authors":"Ana Cachau-Hansgardh, Caitlin McCleery, Manon Limousis-Gayda, Rami Hashish","doi":"10.1080/23335432.2021.2014359","DOIUrl":null,"url":null,"abstract":"<p><p>Any helmet involved in an accident should be replaced, regardless of appearance after impact. However, consumer compliance and interpretation of this recommendation is unclear, for which there is additional ambiguity for lesser impacts. This study aims to investigate the relation between helmet damage visibility and lesser impacts in line with concussion. As a preliminary model, a commercially available road-style helmet was chosen. Twelve helmets underwent impact attenuation testing; four were dropped from the standard testing height of 2 m, and eight from lower drop heights (0.34 and 0.42 m) associated with the production of linear accelerations (90 and 100 g, respectively) consistent with the production of concussion. Expanded polystyrene damage was assessed via flat punch penetration testing. American adults were then polled on helmet damage visibility based upon before and after photos. All helmets demonstrated damage to the expanded polystyrene liner in the form of altered material properties. Helmets dropped from 2 m displayed significant changes in elastic buckling (p < .01) and densification behavior (p < .01) as compared with lower drop height results. Adverse change in elastic buckling behavior was found to increase linearly with drop height (p < .001). Damage visibility was significant for helmets dropped from a 2-meter height, however, such a relation among the helmets impacted at the threshold for concussion was lacking. These findings suggest that for the chosen helmet model, consumers may be unable to distinguish between new helmets and helmets with diminished protective abilities.</p>","PeriodicalId":52124,"journal":{"name":"International Biomechanics","volume":" ","pages":"85-100"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8735878/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analysis of bicycle helmet damage visibility for concussion-threshold impacts.\",\"authors\":\"Ana Cachau-Hansgardh, Caitlin McCleery, Manon Limousis-Gayda, Rami Hashish\",\"doi\":\"10.1080/23335432.2021.2014359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Any helmet involved in an accident should be replaced, regardless of appearance after impact. However, consumer compliance and interpretation of this recommendation is unclear, for which there is additional ambiguity for lesser impacts. This study aims to investigate the relation between helmet damage visibility and lesser impacts in line with concussion. As a preliminary model, a commercially available road-style helmet was chosen. Twelve helmets underwent impact attenuation testing; four were dropped from the standard testing height of 2 m, and eight from lower drop heights (0.34 and 0.42 m) associated with the production of linear accelerations (90 and 100 g, respectively) consistent with the production of concussion. Expanded polystyrene damage was assessed via flat punch penetration testing. American adults were then polled on helmet damage visibility based upon before and after photos. All helmets demonstrated damage to the expanded polystyrene liner in the form of altered material properties. Helmets dropped from 2 m displayed significant changes in elastic buckling (p < .01) and densification behavior (p < .01) as compared with lower drop height results. Adverse change in elastic buckling behavior was found to increase linearly with drop height (p < .001). Damage visibility was significant for helmets dropped from a 2-meter height, however, such a relation among the helmets impacted at the threshold for concussion was lacking. These findings suggest that for the chosen helmet model, consumers may be unable to distinguish between new helmets and helmets with diminished protective abilities.</p>\",\"PeriodicalId\":52124,\"journal\":{\"name\":\"International Biomechanics\",\"volume\":\" \",\"pages\":\"85-100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8735878/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Biomechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23335432.2021.2014359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23335432.2021.2014359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Analysis of bicycle helmet damage visibility for concussion-threshold impacts.
Any helmet involved in an accident should be replaced, regardless of appearance after impact. However, consumer compliance and interpretation of this recommendation is unclear, for which there is additional ambiguity for lesser impacts. This study aims to investigate the relation between helmet damage visibility and lesser impacts in line with concussion. As a preliminary model, a commercially available road-style helmet was chosen. Twelve helmets underwent impact attenuation testing; four were dropped from the standard testing height of 2 m, and eight from lower drop heights (0.34 and 0.42 m) associated with the production of linear accelerations (90 and 100 g, respectively) consistent with the production of concussion. Expanded polystyrene damage was assessed via flat punch penetration testing. American adults were then polled on helmet damage visibility based upon before and after photos. All helmets demonstrated damage to the expanded polystyrene liner in the form of altered material properties. Helmets dropped from 2 m displayed significant changes in elastic buckling (p < .01) and densification behavior (p < .01) as compared with lower drop height results. Adverse change in elastic buckling behavior was found to increase linearly with drop height (p < .001). Damage visibility was significant for helmets dropped from a 2-meter height, however, such a relation among the helmets impacted at the threshold for concussion was lacking. These findings suggest that for the chosen helmet model, consumers may be unable to distinguish between new helmets and helmets with diminished protective abilities.
期刊介绍:
International Biomechanics is a fully Open Access biomechanics journal that aims to foster innovation, debate and collaboration across the full spectrum of biomechanics. We publish original articles, reviews, and short communications in all areas of biomechanics and welcome papers that explore: Bio-fluid mechanics, Continuum Biomechanics, Biotribology, Cellular Biomechanics, Mechanobiology, Mechano-transduction, Tissue Mechanics, Comparative Biomechanics and Functional Anatomy, Allometry, Animal locomotion in biomechanics, Gait analysis in biomechanics, Musculoskeletal and Orthopaedic Biomechanics, Cardiovascular Biomechanics, Plant Biomechanics, Injury Biomechanics, Impact Biomechanics, Sport and Exercise Biomechanics, Kinesiology, Rehabilitation in biomechanics, Quantitative Ergonomics, Human Factors engineering, Occupational Biomechanics, Developmental Biomechanics.