{"title":"啤酒花提取物降低反刍甲烷预防菌甲烷产量的能力。","authors":"J A Blaxland, A J Watkins, L W J Baillie","doi":"10.1155/2021/5510063","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Methane emissions from agriculture are responsible for over 40% of the world's greenhouse gas emissions. In the past, antibiotics were used to control methane production by animals, but concerns over the emergence and spread of antibiotic-resistant bacteria to humans have prompted a search for alternative approaches. Hops are the flowers of the hop plant <i>Humulus lupulus</i>. They have been used to feed cattle for many years and are known to contain antibacterial compounds, and their extracts have been shown to kill members of the <i>Mycobacterium</i> spp including <i>Mycobacterium bovis</i>, the causative agent of bovine tuberculosis as well as a number of human pathogens. In this study, hop extracts were studied for their ability to inhibit methane production from <i>Methanobrevibacter ruminantium</i>, a major methane-producing archaeon found in the rumen of cattle.</p><p><strong>Methods: </strong><i>Methanobrevibacter ruminantium</i> M1<sup>T</sup> (DSM 1093) was grown at 37°C for 30 days, and the amount of methane produced at different time points during this period was measured using gas chromatography. The archaeon was exposed to commercial hop extracts (tetra-hydro-iso-alpha acid and beta acid) and to aqueous hop extracts of a range of hop variants, and their effect on methane production was determined.</p><p><strong>Results: </strong>All of the extracts reduced the level of methane production of <i>M. ruminantium</i> over the 30-day period compared to the negative control (sterile distilled water). The commercial hop extracts were the most effective at inhibiting methane production over the course of the experiment in contrast to the aqueous extracts, which showed a gradual reduction of inhibition with time.</p><p><strong>Conclusions: </strong>Hops contain compounds which inhibit methane production. Given that hops can be safely fed to cattle, this raises the possibility of rationally designing a feed strategy which could reduce greenhouse gas emissions and protect against bovine tuberculosis. This study recommends that further research be undertaken to further identifying bioactive components from hops and their efficacy against a range of archaea.</p>","PeriodicalId":49105,"journal":{"name":"Archaea-An International Microbiological Journal","volume":"2021 ","pages":"5510063"},"PeriodicalIF":2.3000,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8589499/pdf/","citationCount":"3","resultStr":"{\"title\":\"The Ability of Hop Extracts to Reduce the Methane Production of <i>Methanobrevibacter ruminantium</i>.\",\"authors\":\"J A Blaxland, A J Watkins, L W J Baillie\",\"doi\":\"10.1155/2021/5510063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Methane emissions from agriculture are responsible for over 40% of the world's greenhouse gas emissions. In the past, antibiotics were used to control methane production by animals, but concerns over the emergence and spread of antibiotic-resistant bacteria to humans have prompted a search for alternative approaches. Hops are the flowers of the hop plant <i>Humulus lupulus</i>. They have been used to feed cattle for many years and are known to contain antibacterial compounds, and their extracts have been shown to kill members of the <i>Mycobacterium</i> spp including <i>Mycobacterium bovis</i>, the causative agent of bovine tuberculosis as well as a number of human pathogens. In this study, hop extracts were studied for their ability to inhibit methane production from <i>Methanobrevibacter ruminantium</i>, a major methane-producing archaeon found in the rumen of cattle.</p><p><strong>Methods: </strong><i>Methanobrevibacter ruminantium</i> M1<sup>T</sup> (DSM 1093) was grown at 37°C for 30 days, and the amount of methane produced at different time points during this period was measured using gas chromatography. The archaeon was exposed to commercial hop extracts (tetra-hydro-iso-alpha acid and beta acid) and to aqueous hop extracts of a range of hop variants, and their effect on methane production was determined.</p><p><strong>Results: </strong>All of the extracts reduced the level of methane production of <i>M. ruminantium</i> over the 30-day period compared to the negative control (sterile distilled water). The commercial hop extracts were the most effective at inhibiting methane production over the course of the experiment in contrast to the aqueous extracts, which showed a gradual reduction of inhibition with time.</p><p><strong>Conclusions: </strong>Hops contain compounds which inhibit methane production. Given that hops can be safely fed to cattle, this raises the possibility of rationally designing a feed strategy which could reduce greenhouse gas emissions and protect against bovine tuberculosis. This study recommends that further research be undertaken to further identifying bioactive components from hops and their efficacy against a range of archaea.</p>\",\"PeriodicalId\":49105,\"journal\":{\"name\":\"Archaea-An International Microbiological Journal\",\"volume\":\"2021 \",\"pages\":\"5510063\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8589499/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archaea-An International Microbiological Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/5510063\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archaea-An International Microbiological Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2021/5510063","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
The Ability of Hop Extracts to Reduce the Methane Production of Methanobrevibacter ruminantium.
Background: Methane emissions from agriculture are responsible for over 40% of the world's greenhouse gas emissions. In the past, antibiotics were used to control methane production by animals, but concerns over the emergence and spread of antibiotic-resistant bacteria to humans have prompted a search for alternative approaches. Hops are the flowers of the hop plant Humulus lupulus. They have been used to feed cattle for many years and are known to contain antibacterial compounds, and their extracts have been shown to kill members of the Mycobacterium spp including Mycobacterium bovis, the causative agent of bovine tuberculosis as well as a number of human pathogens. In this study, hop extracts were studied for their ability to inhibit methane production from Methanobrevibacter ruminantium, a major methane-producing archaeon found in the rumen of cattle.
Methods: Methanobrevibacter ruminantium M1T (DSM 1093) was grown at 37°C for 30 days, and the amount of methane produced at different time points during this period was measured using gas chromatography. The archaeon was exposed to commercial hop extracts (tetra-hydro-iso-alpha acid and beta acid) and to aqueous hop extracts of a range of hop variants, and their effect on methane production was determined.
Results: All of the extracts reduced the level of methane production of M. ruminantium over the 30-day period compared to the negative control (sterile distilled water). The commercial hop extracts were the most effective at inhibiting methane production over the course of the experiment in contrast to the aqueous extracts, which showed a gradual reduction of inhibition with time.
Conclusions: Hops contain compounds which inhibit methane production. Given that hops can be safely fed to cattle, this raises the possibility of rationally designing a feed strategy which could reduce greenhouse gas emissions and protect against bovine tuberculosis. This study recommends that further research be undertaken to further identifying bioactive components from hops and their efficacy against a range of archaea.
期刊介绍:
Archaea is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles dealing with all aspects of archaea, including environmental adaptation, enzymology, genetics and genomics, metabolism, molecular biology, molecular ecology, phylogeny, and ultrastructure. Bioinformatics studies and biotechnological implications of archaea will be considered. Published since 2002, Archaea provides a unique venue for exchanging information about these extraordinary prokaryotes.