Mahbaneh Eshaghzadeh Torbati, Dana L Tudorascu, Davneet S Minhas, Pauline Maillard, Charles S DeCarli, Seong Jae Hwang
{"title":"通过结构保持嵌入学习实现配对神经影像数据的多扫描仪协调","authors":"Mahbaneh Eshaghzadeh Torbati, Dana L Tudorascu, Davneet S Minhas, Pauline Maillard, Charles S DeCarli, Seong Jae Hwang","doi":"10.1109/ICCVW54120.2021.00367","DOIUrl":null,"url":null,"abstract":"<p><p>Combining datasets from multiple sites/scanners has been becoming increasingly more prevalent in modern neuroimaging studies. Despite numerous benefits from the growth in sample size, substantial technical variability associated with site/scanner-related effects exists which may inadvertently bias subsequent downstream analyses. Such a challenge calls for a data harmonization procedure which reduces the scanner effects and allows the scans to be combined for pooled analyses. In this work, we present MISPEL (Multi-scanner Image harmonization via Structure Preserving Embedding Learning), a multi-scanner harmonization framework. Unlike existing techniques, MISPEL does not assume a perfect coregistration across the scans, and the framework is naturally extendable to more than two scanners. Importantly, we incorporate our multi-scanner dataset where each subject is scanned on four different scanners. This unique paired dataset allows us to define and aim for an ideal harmonization (e.g., each subject with identical brain tissue volumes on all scanners). We extensively view scanner effects under varying metrics and demonstrate how MISPEL significantly improves them.</p>","PeriodicalId":72022,"journal":{"name":"... IEEE International Conference on Computer Vision workshops. IEEE International Conference on Computer Vision","volume":" ","pages":"3277-3286"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8668020/pdf/nihms-1760021.pdf","citationCount":"0","resultStr":"{\"title\":\"Multi-scanner Harmonization of Paired Neuroimaging Data via Structure Preserving Embedding Learning.\",\"authors\":\"Mahbaneh Eshaghzadeh Torbati, Dana L Tudorascu, Davneet S Minhas, Pauline Maillard, Charles S DeCarli, Seong Jae Hwang\",\"doi\":\"10.1109/ICCVW54120.2021.00367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Combining datasets from multiple sites/scanners has been becoming increasingly more prevalent in modern neuroimaging studies. Despite numerous benefits from the growth in sample size, substantial technical variability associated with site/scanner-related effects exists which may inadvertently bias subsequent downstream analyses. Such a challenge calls for a data harmonization procedure which reduces the scanner effects and allows the scans to be combined for pooled analyses. In this work, we present MISPEL (Multi-scanner Image harmonization via Structure Preserving Embedding Learning), a multi-scanner harmonization framework. Unlike existing techniques, MISPEL does not assume a perfect coregistration across the scans, and the framework is naturally extendable to more than two scanners. Importantly, we incorporate our multi-scanner dataset where each subject is scanned on four different scanners. This unique paired dataset allows us to define and aim for an ideal harmonization (e.g., each subject with identical brain tissue volumes on all scanners). We extensively view scanner effects under varying metrics and demonstrate how MISPEL significantly improves them.</p>\",\"PeriodicalId\":72022,\"journal\":{\"name\":\"... IEEE International Conference on Computer Vision workshops. IEEE International Conference on Computer Vision\",\"volume\":\" \",\"pages\":\"3277-3286\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8668020/pdf/nihms-1760021.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... IEEE International Conference on Computer Vision workshops. IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCVW54120.2021.00367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/11/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... IEEE International Conference on Computer Vision workshops. IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-scanner Harmonization of Paired Neuroimaging Data via Structure Preserving Embedding Learning.
Combining datasets from multiple sites/scanners has been becoming increasingly more prevalent in modern neuroimaging studies. Despite numerous benefits from the growth in sample size, substantial technical variability associated with site/scanner-related effects exists which may inadvertently bias subsequent downstream analyses. Such a challenge calls for a data harmonization procedure which reduces the scanner effects and allows the scans to be combined for pooled analyses. In this work, we present MISPEL (Multi-scanner Image harmonization via Structure Preserving Embedding Learning), a multi-scanner harmonization framework. Unlike existing techniques, MISPEL does not assume a perfect coregistration across the scans, and the framework is naturally extendable to more than two scanners. Importantly, we incorporate our multi-scanner dataset where each subject is scanned on four different scanners. This unique paired dataset allows us to define and aim for an ideal harmonization (e.g., each subject with identical brain tissue volumes on all scanners). We extensively view scanner effects under varying metrics and demonstrate how MISPEL significantly improves them.