肿瘤外科放射组学:应用与挑战。

IF 1.5 4区 医学 Q3 SURGERY
Travis L Williams, Lily V Saadat, Mithat Gonen, Alice Wei, Richard K G Do, Amber L Simpson
{"title":"肿瘤外科放射组学:应用与挑战。","authors":"Travis L Williams, Lily V Saadat, Mithat Gonen, Alice Wei, Richard K G Do, Amber L Simpson","doi":"10.1080/24699322.2021.1994014","DOIUrl":null,"url":null,"abstract":"<p><p>Surgery is a curative treatment option for many patients with malignant tumors. Increased attention has focused on the combination of surgery with chemotherapy, as multimodality treatment has been associated with promising results in certain cancer types. Despite these data, there remains clinical equipoise on optimal timing and patient selection for neoadjuvant or adjuvant strategies. Radiomics, an emerging field involving the extraction of advanced features from radiographic images, has the potential to revolutionize oncologic treatment and contribute to the advance of personalized therapy by helping predict tumor behavior and response to therapy. This review analyzes and summarizes studies that use radiomics with machine learning in patients who have received neoadjuvant and/or adjuvant chemotherapy to predict prognosis, recurrence, survival, and therapeutic response for various cancer types. While studies in both neoadjuvant and adjuvant settings demonstrate above average performance on ability to predict progression-free and overall survival, there remain many challenges and limitations to widespread implementation of this technology. The lack of standardization of common practices to analyze radiomics, limited data sharing, and absence of auto-segmentation have hindered the inclusion and rapid adoption of radiomics in prospective, clinical studies.</p>","PeriodicalId":56051,"journal":{"name":"Computer Assisted Surgery","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9238238/pdf/nihms-1813935.pdf","citationCount":"0","resultStr":"{\"title\":\"Radiomics in surgical oncology: applications and challenges.\",\"authors\":\"Travis L Williams, Lily V Saadat, Mithat Gonen, Alice Wei, Richard K G Do, Amber L Simpson\",\"doi\":\"10.1080/24699322.2021.1994014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Surgery is a curative treatment option for many patients with malignant tumors. Increased attention has focused on the combination of surgery with chemotherapy, as multimodality treatment has been associated with promising results in certain cancer types. Despite these data, there remains clinical equipoise on optimal timing and patient selection for neoadjuvant or adjuvant strategies. Radiomics, an emerging field involving the extraction of advanced features from radiographic images, has the potential to revolutionize oncologic treatment and contribute to the advance of personalized therapy by helping predict tumor behavior and response to therapy. This review analyzes and summarizes studies that use radiomics with machine learning in patients who have received neoadjuvant and/or adjuvant chemotherapy to predict prognosis, recurrence, survival, and therapeutic response for various cancer types. While studies in both neoadjuvant and adjuvant settings demonstrate above average performance on ability to predict progression-free and overall survival, there remain many challenges and limitations to widespread implementation of this technology. The lack of standardization of common practices to analyze radiomics, limited data sharing, and absence of auto-segmentation have hindered the inclusion and rapid adoption of radiomics in prospective, clinical studies.</p>\",\"PeriodicalId\":56051,\"journal\":{\"name\":\"Computer Assisted Surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9238238/pdf/nihms-1813935.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Assisted Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/24699322.2021.1994014\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Assisted Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/24699322.2021.1994014","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

摘要

手术是许多恶性肿瘤患者的根治性治疗选择。由于多模式治疗在某些癌症类型中具有良好的疗效,手术与化疗的结合受到越来越多的关注。尽管有这些数据,但在新辅助或辅助治疗策略的最佳时机和患者选择方面,临床上仍存在分歧。放射组学是一个新兴领域,涉及从放射影像中提取高级特征,有可能彻底改变肿瘤治疗,并通过帮助预测肿瘤行为和对治疗的反应促进个性化治疗的发展。本综述分析并总结了在接受新辅助和/或辅助化疗的患者中使用放射组学与机器学习来预测各种癌症类型的预后、复发、生存和治疗反应的研究。虽然在新辅助和辅助治疗环境下进行的研究表明,预测无进展生存期和总生存期的能力高于平均水平,但要广泛应用这项技术仍面临许多挑战和限制。放射组学分析缺乏标准化的通用方法、数据共享有限以及缺乏自动分区功能,这些都阻碍了放射组学在前瞻性临床研究中的应用和快速推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Radiomics in surgical oncology: applications and challenges.

Radiomics in surgical oncology: applications and challenges.

Radiomics in surgical oncology: applications and challenges.

Surgery is a curative treatment option for many patients with malignant tumors. Increased attention has focused on the combination of surgery with chemotherapy, as multimodality treatment has been associated with promising results in certain cancer types. Despite these data, there remains clinical equipoise on optimal timing and patient selection for neoadjuvant or adjuvant strategies. Radiomics, an emerging field involving the extraction of advanced features from radiographic images, has the potential to revolutionize oncologic treatment and contribute to the advance of personalized therapy by helping predict tumor behavior and response to therapy. This review analyzes and summarizes studies that use radiomics with machine learning in patients who have received neoadjuvant and/or adjuvant chemotherapy to predict prognosis, recurrence, survival, and therapeutic response for various cancer types. While studies in both neoadjuvant and adjuvant settings demonstrate above average performance on ability to predict progression-free and overall survival, there remain many challenges and limitations to widespread implementation of this technology. The lack of standardization of common practices to analyze radiomics, limited data sharing, and absence of auto-segmentation have hindered the inclusion and rapid adoption of radiomics in prospective, clinical studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Assisted Surgery
Computer Assisted Surgery Medicine-Surgery
CiteScore
2.30
自引率
0.00%
发文量
13
审稿时长
10 weeks
期刊介绍: omputer Assisted Surgery aims to improve patient care by advancing the utilization of computers during treatment; to evaluate the benefits and risks associated with the integration of advanced digital technologies into surgical practice; to disseminate clinical and basic research relevant to stereotactic surgery, minimal access surgery, endoscopy, and surgical robotics; to encourage interdisciplinary collaboration between engineers and physicians in developing new concepts and applications; to educate clinicians about the principles and techniques of computer assisted surgery and therapeutics; and to serve the international scientific community as a medium for the transfer of new information relating to theory, research, and practice in biomedical imaging and the surgical specialties. The scope of Computer Assisted Surgery encompasses all fields within surgery, as well as biomedical imaging and instrumentation, and digital technology employed as an adjunct to imaging in diagnosis, therapeutics, and surgery. Topics featured include frameless as well as conventional stereotactic procedures, surgery guided by intraoperative ultrasound or magnetic resonance imaging, image guided focused irradiation, robotic surgery, and any therapeutic interventions performed with the use of digital imaging technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信