掌握非常规的分泌机制,以桥梁细胞应激信号到细胞外蛋白质组。

IF 4.1 Q2 CELL BIOLOGY
Cell Stress Pub Date : 2021-10-15 eCollection Date: 2021-11-01 DOI:10.15698/cst2021.11.259
Constantinos Demetriades, Julian Nüchel, Markus Plomann
{"title":"掌握非常规的分泌机制,以桥梁细胞应激信号到细胞外蛋白质组。","authors":"Constantinos Demetriades,&nbsp;Julian Nüchel,&nbsp;Markus Plomann","doi":"10.15698/cst2021.11.259","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular adaptation to stress is a crucial homeostatic process for survival, metabolism, physiology, and disease. Cells respond to stress stimuli (e.g., nutrient starvation, growth factor deprivation, hypoxia, low energy, etc.) by changing the activity of signaling pathways, and interact with their environment by qualitatively and quantitatively modifying their intracellular, surface, and extracellular proteomes. How this delicate communication takes place is a hot topic in cell biological research, and has important implications for human disease.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8561302/pdf/","citationCount":"0","resultStr":"{\"title\":\"GRASPing the unconventional secretory machinery to bridge cellular stress signaling to the extracellular proteome.\",\"authors\":\"Constantinos Demetriades,&nbsp;Julian Nüchel,&nbsp;Markus Plomann\",\"doi\":\"10.15698/cst2021.11.259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cellular adaptation to stress is a crucial homeostatic process for survival, metabolism, physiology, and disease. Cells respond to stress stimuli (e.g., nutrient starvation, growth factor deprivation, hypoxia, low energy, etc.) by changing the activity of signaling pathways, and interact with their environment by qualitatively and quantitatively modifying their intracellular, surface, and extracellular proteomes. How this delicate communication takes place is a hot topic in cell biological research, and has important implications for human disease.</p>\",\"PeriodicalId\":36371,\"journal\":{\"name\":\"Cell Stress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2021-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8561302/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Stress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15698/cst2021.11.259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15698/cst2021.11.259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞对压力的适应是生存、代谢、生理和疾病的一个重要的内稳态过程。细胞通过改变信号通路的活性来响应应激刺激(如营养缺乏、生长因子剥夺、缺氧、低能量等),并通过定性和定量地改变细胞内、表面和细胞外蛋白质组与环境相互作用。这种微妙的交流是如何发生的是细胞生物学研究中的一个热门话题,对人类疾病具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

GRASPing the unconventional secretory machinery to bridge cellular stress signaling to the extracellular proteome.

GRASPing the unconventional secretory machinery to bridge cellular stress signaling to the extracellular proteome.

Cellular adaptation to stress is a crucial homeostatic process for survival, metabolism, physiology, and disease. Cells respond to stress stimuli (e.g., nutrient starvation, growth factor deprivation, hypoxia, low energy, etc.) by changing the activity of signaling pathways, and interact with their environment by qualitatively and quantitatively modifying their intracellular, surface, and extracellular proteomes. How this delicate communication takes place is a hot topic in cell biological research, and has important implications for human disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Stress
Cell Stress Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
13.50
自引率
0.00%
发文量
21
审稿时长
15 weeks
期刊介绍: Cell Stress is an open-access, peer-reviewed journal that is dedicated to publishing highly relevant research in the field of cellular pathology. The journal focuses on advancing our understanding of the molecular, mechanistic, phenotypic, and other critical aspects that underpin cellular dysfunction and disease. It specifically aims to foster cell biology research that is applicable to a range of significant human diseases, including neurodegenerative disorders, myopathies, mitochondriopathies, infectious diseases, cancer, and pathological aging. The scope of Cell Stress is broad, welcoming submissions that represent a spectrum of research from fundamental to translational and clinical studies. The journal is a valuable resource for scientists, educators, and policymakers worldwide, as well as for any individual with an interest in cellular pathology. It serves as a platform for the dissemination of research findings that are instrumental in the investigation, classification, diagnosis, and therapeutic management of major diseases. By being open-access, Cell Stress ensures that its content is freely available to a global audience, thereby promoting international scientific collaboration and accelerating the exchange of knowledge within the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信