{"title":"断奶后大鼠侧脑室壁D5多巴胺受体的表达。","authors":"Antonis Prosilis, Vassilios Mesiakaris, Antonios Stamatakis","doi":"10.1387/ijdb.210163as","DOIUrl":null,"url":null,"abstract":"<p><p>Even before the first synapses appear, neurotransmitters and their receptors are present in the developing brain, regulating the cell fate of neuronal progenitors in neurogenic niches, such as the lateral ventricle. In particular, dopamine appears to play a pivotal role in the neurogenesis of the subventricular zone by controlling the proliferation and differentiation of progenitors through activation of different receptors. Although dopamine receptor 5 (D5R) is expressed prenatally, there is little information regarding its role in either pre- or postnatal forebrain development. To examine the role of D5Rs in neurogenesis in the rat lateral ventricle subventricular zone (V-SVZ), we immunohistochemically defined D5R expression, as well as BrdU incorporation in progenitor cells of various post-weaning stages (Post-natal day (P) 20 until P80). We found that the level of proliferating cells is stable from postnatal day 20 until 50, and then declines sharply on P80. Concomitantly, D5R is expressed in all ages examined, but we detected a progressive decrease in the density of D5R+ cells from P40 until P80. Moreover, double immunostaining for BrdU and D5R revealed that proliferating cells in V-SVZ also express D5R. Collectively, our data suggest that D5R is expressed in the post-weaning V-SVZ of rat at least until P80, and its expression pattern coincides with that of proliferating cells in the V-SVZ, hinting at a possible role of D5Rs in the regulation of neuronal progenitor division/differentiation.</p>","PeriodicalId":50329,"journal":{"name":"International Journal of Developmental Biology","volume":"66 1-2-3","pages":"263-267"},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expression of D5 dopamine receptors in the lateral ventricle walls during post-weaning rat development.\",\"authors\":\"Antonis Prosilis, Vassilios Mesiakaris, Antonios Stamatakis\",\"doi\":\"10.1387/ijdb.210163as\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Even before the first synapses appear, neurotransmitters and their receptors are present in the developing brain, regulating the cell fate of neuronal progenitors in neurogenic niches, such as the lateral ventricle. In particular, dopamine appears to play a pivotal role in the neurogenesis of the subventricular zone by controlling the proliferation and differentiation of progenitors through activation of different receptors. Although dopamine receptor 5 (D5R) is expressed prenatally, there is little information regarding its role in either pre- or postnatal forebrain development. To examine the role of D5Rs in neurogenesis in the rat lateral ventricle subventricular zone (V-SVZ), we immunohistochemically defined D5R expression, as well as BrdU incorporation in progenitor cells of various post-weaning stages (Post-natal day (P) 20 until P80). We found that the level of proliferating cells is stable from postnatal day 20 until 50, and then declines sharply on P80. Concomitantly, D5R is expressed in all ages examined, but we detected a progressive decrease in the density of D5R+ cells from P40 until P80. Moreover, double immunostaining for BrdU and D5R revealed that proliferating cells in V-SVZ also express D5R. Collectively, our data suggest that D5R is expressed in the post-weaning V-SVZ of rat at least until P80, and its expression pattern coincides with that of proliferating cells in the V-SVZ, hinting at a possible role of D5Rs in the regulation of neuronal progenitor division/differentiation.</p>\",\"PeriodicalId\":50329,\"journal\":{\"name\":\"International Journal of Developmental Biology\",\"volume\":\"66 1-2-3\",\"pages\":\"263-267\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Developmental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1387/ijdb.210163as\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1387/ijdb.210163as","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Expression of D5 dopamine receptors in the lateral ventricle walls during post-weaning rat development.
Even before the first synapses appear, neurotransmitters and their receptors are present in the developing brain, regulating the cell fate of neuronal progenitors in neurogenic niches, such as the lateral ventricle. In particular, dopamine appears to play a pivotal role in the neurogenesis of the subventricular zone by controlling the proliferation and differentiation of progenitors through activation of different receptors. Although dopamine receptor 5 (D5R) is expressed prenatally, there is little information regarding its role in either pre- or postnatal forebrain development. To examine the role of D5Rs in neurogenesis in the rat lateral ventricle subventricular zone (V-SVZ), we immunohistochemically defined D5R expression, as well as BrdU incorporation in progenitor cells of various post-weaning stages (Post-natal day (P) 20 until P80). We found that the level of proliferating cells is stable from postnatal day 20 until 50, and then declines sharply on P80. Concomitantly, D5R is expressed in all ages examined, but we detected a progressive decrease in the density of D5R+ cells from P40 until P80. Moreover, double immunostaining for BrdU and D5R revealed that proliferating cells in V-SVZ also express D5R. Collectively, our data suggest that D5R is expressed in the post-weaning V-SVZ of rat at least until P80, and its expression pattern coincides with that of proliferating cells in the V-SVZ, hinting at a possible role of D5Rs in the regulation of neuronal progenitor division/differentiation.
期刊介绍:
The International Journal of Developmental Biology (ISSN: 0214-
6282) is an independent, not for profit scholarly journal, published by
scientists, for scientists. The journal publishes papers which throw
light on our understanding of animal and plant developmental mechanisms in health and disease and, in particular, research which elucidates the developmental principles underlying stem cell properties
and cancer. Technical, historical or theoretical approaches also fall
within the scope of the journal. Criteria for acceptance include scientific excellence, novelty and quality of presentation of data and illustrations. Advantages of publishing in the journal include: rapid
publication; free unlimited color reproduction; no page charges; free
publication of online supplementary material; free publication of audio
files (MP3 type); one-to-one personalized attention at all stages
during the editorial process. An easy online submission facility and an
open online access option, by means of which papers can be published without any access restrictions. In keeping with its mission, the
journal offers free online subscriptions to academic institutions in
developing countries.