{"title":"皮肤(病理)生理学中的角质细胞分化和蛋白水解途径。","authors":"Eleni Zingkou, Georgios Pampalakis, Georgia Sotiropoulou","doi":"10.1387/ijdb.210161gs","DOIUrl":null,"url":null,"abstract":"<p><p>The epidermis is a stratified epithelium that forms the barrier between the organism and its environment. It is mainly composed of keratinocytes at various stages of differentiation. The stratum corneum is the outermost layer of the epidermis and is formed of multiple layers of anucleated keratinocytes called corneocytes. We aim to highlight the roles of epidermal differentiation and proteolysis in skin diseases. Skin biopsies isolated from <i>Spink5<sup>-/-</sup></i> mice, the established model of Netherton syndrome (NS), and from patients with NS, seborrheic dermatitis (SD) and psoriasis, as well as healthy controls, were analyzed by histology and immunohistochemistry. Our results showed that NS, SD, and psoriasis are all characterized by abnormal epidermal differentiation, manifested by hyperplasia, hyperkeratosis, and parakeratosis. At the molecular level, abnormal differentiation is accompanied by increased expression of involucrin and decreased expression of loricrin in NS and psoriasis. Increased epidermal proteolysis associated with increased kallikrein-related peptidases (KLKs) expression is also observed in both NS and psoriatic epidermis. Furthermore, reduced expression of desmosomal proteins is observed in NS, but increased in psoriasis. Since desmosomal proteins are proteolytic substrates and control keratinocyte differentiation, their altered expression directly links epidermal proteolysis to differentiation. In conclusion, abnormal cellular differentiation and proteolysis are interconnected and underlie the pathology of NS, SD and psoriasis.</p>","PeriodicalId":50329,"journal":{"name":"International Journal of Developmental Biology","volume":"66 1-2-3","pages":"269-275"},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Keratinocyte differentiation and proteolytic pathways in skin (patho) physiology.\",\"authors\":\"Eleni Zingkou, Georgios Pampalakis, Georgia Sotiropoulou\",\"doi\":\"10.1387/ijdb.210161gs\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The epidermis is a stratified epithelium that forms the barrier between the organism and its environment. It is mainly composed of keratinocytes at various stages of differentiation. The stratum corneum is the outermost layer of the epidermis and is formed of multiple layers of anucleated keratinocytes called corneocytes. We aim to highlight the roles of epidermal differentiation and proteolysis in skin diseases. Skin biopsies isolated from <i>Spink5<sup>-/-</sup></i> mice, the established model of Netherton syndrome (NS), and from patients with NS, seborrheic dermatitis (SD) and psoriasis, as well as healthy controls, were analyzed by histology and immunohistochemistry. Our results showed that NS, SD, and psoriasis are all characterized by abnormal epidermal differentiation, manifested by hyperplasia, hyperkeratosis, and parakeratosis. At the molecular level, abnormal differentiation is accompanied by increased expression of involucrin and decreased expression of loricrin in NS and psoriasis. Increased epidermal proteolysis associated with increased kallikrein-related peptidases (KLKs) expression is also observed in both NS and psoriatic epidermis. Furthermore, reduced expression of desmosomal proteins is observed in NS, but increased in psoriasis. Since desmosomal proteins are proteolytic substrates and control keratinocyte differentiation, their altered expression directly links epidermal proteolysis to differentiation. In conclusion, abnormal cellular differentiation and proteolysis are interconnected and underlie the pathology of NS, SD and psoriasis.</p>\",\"PeriodicalId\":50329,\"journal\":{\"name\":\"International Journal of Developmental Biology\",\"volume\":\"66 1-2-3\",\"pages\":\"269-275\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Developmental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1387/ijdb.210161gs\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1387/ijdb.210161gs","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Keratinocyte differentiation and proteolytic pathways in skin (patho) physiology.
The epidermis is a stratified epithelium that forms the barrier between the organism and its environment. It is mainly composed of keratinocytes at various stages of differentiation. The stratum corneum is the outermost layer of the epidermis and is formed of multiple layers of anucleated keratinocytes called corneocytes. We aim to highlight the roles of epidermal differentiation and proteolysis in skin diseases. Skin biopsies isolated from Spink5-/- mice, the established model of Netherton syndrome (NS), and from patients with NS, seborrheic dermatitis (SD) and psoriasis, as well as healthy controls, were analyzed by histology and immunohistochemistry. Our results showed that NS, SD, and psoriasis are all characterized by abnormal epidermal differentiation, manifested by hyperplasia, hyperkeratosis, and parakeratosis. At the molecular level, abnormal differentiation is accompanied by increased expression of involucrin and decreased expression of loricrin in NS and psoriasis. Increased epidermal proteolysis associated with increased kallikrein-related peptidases (KLKs) expression is also observed in both NS and psoriatic epidermis. Furthermore, reduced expression of desmosomal proteins is observed in NS, but increased in psoriasis. Since desmosomal proteins are proteolytic substrates and control keratinocyte differentiation, their altered expression directly links epidermal proteolysis to differentiation. In conclusion, abnormal cellular differentiation and proteolysis are interconnected and underlie the pathology of NS, SD and psoriasis.
期刊介绍:
The International Journal of Developmental Biology (ISSN: 0214-
6282) is an independent, not for profit scholarly journal, published by
scientists, for scientists. The journal publishes papers which throw
light on our understanding of animal and plant developmental mechanisms in health and disease and, in particular, research which elucidates the developmental principles underlying stem cell properties
and cancer. Technical, historical or theoretical approaches also fall
within the scope of the journal. Criteria for acceptance include scientific excellence, novelty and quality of presentation of data and illustrations. Advantages of publishing in the journal include: rapid
publication; free unlimited color reproduction; no page charges; free
publication of online supplementary material; free publication of audio
files (MP3 type); one-to-one personalized attention at all stages
during the editorial process. An easy online submission facility and an
open online access option, by means of which papers can be published without any access restrictions. In keeping with its mission, the
journal offers free online subscriptions to academic institutions in
developing countries.