结合计算和实验研究,以更好地了解纤维素及其类似物。

2区 化学 Q2 Chemistry
Yoshiharu Nishiyama
{"title":"结合计算和实验研究,以更好地了解纤维素及其类似物。","authors":"Yoshiharu Nishiyama","doi":"10.1016/bs.accb.2021.10.002","DOIUrl":null,"url":null,"abstract":"<p><p>Over the last decade, the structural refinement of cellulose allomorphs and their analogs has been advanced using high-resolution fiber diffraction. This also includes structures of crystals complexed with small molecules, which can inherently involve disorders. Computational methods, including density functional theory, in combination with molecular modeling are leading to improved structural analyses. Spectroscopic techniques such as vibrational spectroscopy give quantitative and robust data directly related to structural insights on cellulose. These data will benefit from improved molecular modeling's capacity for interpretation and will also serve as a gauge to measure the capacity of molecular modeling as an aid in structural determinations. Improvement in the capacity to directly simulate experimental data such as that from scattering, diffraction, and spectra will be the key for further integration of modeling and experimental approaches.</p>","PeriodicalId":7215,"journal":{"name":"Advances in carbohydrate chemistry and biochemistry","volume":"80 ","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining computational and experimental studies for a better understanding of cellulose and its analogs.\",\"authors\":\"Yoshiharu Nishiyama\",\"doi\":\"10.1016/bs.accb.2021.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the last decade, the structural refinement of cellulose allomorphs and their analogs has been advanced using high-resolution fiber diffraction. This also includes structures of crystals complexed with small molecules, which can inherently involve disorders. Computational methods, including density functional theory, in combination with molecular modeling are leading to improved structural analyses. Spectroscopic techniques such as vibrational spectroscopy give quantitative and robust data directly related to structural insights on cellulose. These data will benefit from improved molecular modeling's capacity for interpretation and will also serve as a gauge to measure the capacity of molecular modeling as an aid in structural determinations. Improvement in the capacity to directly simulate experimental data such as that from scattering, diffraction, and spectra will be the key for further integration of modeling and experimental approaches.</p>\",\"PeriodicalId\":7215,\"journal\":{\"name\":\"Advances in carbohydrate chemistry and biochemistry\",\"volume\":\"80 \",\"pages\":\"1-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in carbohydrate chemistry and biochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.accb.2021.10.002\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/11/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in carbohydrate chemistry and biochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/bs.accb.2021.10.002","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年中,利用高分辨率纤维衍射技术对纤维素异构体及其类似物的结构进行了改进。这也包括晶体结构与小分子的复杂,这可能固有地涉及紊乱。计算方法,包括密度泛函理论,与分子建模相结合,导致结构分析的改进。光谱技术,如振动光谱提供定量和可靠的数据直接相关的纤维素结构的见解。这些数据将受益于改进的分子建模解释能力,也将作为衡量分子建模能力的标准,作为结构确定的辅助手段。提高直接模拟散射、衍射和光谱等实验数据的能力将是进一步整合建模和实验方法的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining computational and experimental studies for a better understanding of cellulose and its analogs.

Over the last decade, the structural refinement of cellulose allomorphs and their analogs has been advanced using high-resolution fiber diffraction. This also includes structures of crystals complexed with small molecules, which can inherently involve disorders. Computational methods, including density functional theory, in combination with molecular modeling are leading to improved structural analyses. Spectroscopic techniques such as vibrational spectroscopy give quantitative and robust data directly related to structural insights on cellulose. These data will benefit from improved molecular modeling's capacity for interpretation and will also serve as a gauge to measure the capacity of molecular modeling as an aid in structural determinations. Improvement in the capacity to directly simulate experimental data such as that from scattering, diffraction, and spectra will be the key for further integration of modeling and experimental approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in carbohydrate chemistry and biochemistry
Advances in carbohydrate chemistry and biochemistry 生物-生化与分子生物学
CiteScore
2.20
自引率
0.00%
发文量
0
期刊介绍: Advances in Carbohydrate Chemistry and Biochemistry has provided, since its inception in 1945, critical and informative articles written by research specialists that integrate the industrial, analytical, and technological aspects of biochemistry, organic chemistry, and instrumentation methodology to the study of carbohydrates. Its articles present a definitive interpretation of the current status and future trends in carbohydrate chemistry and biochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信