{"title":"禽肌肉核DNA含量缺乏变异。","authors":"Ana Gabriela Jimenez, Emily Gray Lencyk","doi":"10.1139/gen-2021-0052","DOIUrl":null,"url":null,"abstract":"<p><p>The avian pectoralis muscle demonstrates plasticity with regard to size, so that temperate birds facing winter conditions or birds enduring a migration bout tend to have significant increases in the size and mass of this tissue due to muscular hypertrophy. Myonuclear domain (MND), the volume of cytoplasm a myonuclei services, in the pectoralis muscle of birds seems to be altered during thermal stress or changing seasons. However, there is no information available regarding muscle DNA content or ploidy level within the avian pectoralis. Changes in muscle DNA content can be used in this tissue to aid in size and mass changes. Here, we hypothesized that long-distance migrants or temperate residents would use the process of endoreduplication to aid in altering muscle size. Mostly contradictory to our hypotheses, we found no differences in the mean muscle DNA content in any of the 62 species of birds examined in this study. We also found no correlations between mean muscle DNA content and other muscle structural measurements, such as the number of nuclei per millimeter of fiber, myonuclear domain, and fiber cross-sectional area. Thus, while avian muscle seems more phenotypically plastic than mammalian muscle, the biological processes surrounding myonuclear function may be more closely related to those seen in mammals.</p>","PeriodicalId":12809,"journal":{"name":"Genome","volume":"65 4","pages":"219-227"},"PeriodicalIF":2.3000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lack of variation in nuclear DNA content in avian muscle.\",\"authors\":\"Ana Gabriela Jimenez, Emily Gray Lencyk\",\"doi\":\"10.1139/gen-2021-0052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The avian pectoralis muscle demonstrates plasticity with regard to size, so that temperate birds facing winter conditions or birds enduring a migration bout tend to have significant increases in the size and mass of this tissue due to muscular hypertrophy. Myonuclear domain (MND), the volume of cytoplasm a myonuclei services, in the pectoralis muscle of birds seems to be altered during thermal stress or changing seasons. However, there is no information available regarding muscle DNA content or ploidy level within the avian pectoralis. Changes in muscle DNA content can be used in this tissue to aid in size and mass changes. Here, we hypothesized that long-distance migrants or temperate residents would use the process of endoreduplication to aid in altering muscle size. Mostly contradictory to our hypotheses, we found no differences in the mean muscle DNA content in any of the 62 species of birds examined in this study. We also found no correlations between mean muscle DNA content and other muscle structural measurements, such as the number of nuclei per millimeter of fiber, myonuclear domain, and fiber cross-sectional area. Thus, while avian muscle seems more phenotypically plastic than mammalian muscle, the biological processes surrounding myonuclear function may be more closely related to those seen in mammals.</p>\",\"PeriodicalId\":12809,\"journal\":{\"name\":\"Genome\",\"volume\":\"65 4\",\"pages\":\"219-227\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/gen-2021-0052\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/12/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/gen-2021-0052","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Lack of variation in nuclear DNA content in avian muscle.
The avian pectoralis muscle demonstrates plasticity with regard to size, so that temperate birds facing winter conditions or birds enduring a migration bout tend to have significant increases in the size and mass of this tissue due to muscular hypertrophy. Myonuclear domain (MND), the volume of cytoplasm a myonuclei services, in the pectoralis muscle of birds seems to be altered during thermal stress or changing seasons. However, there is no information available regarding muscle DNA content or ploidy level within the avian pectoralis. Changes in muscle DNA content can be used in this tissue to aid in size and mass changes. Here, we hypothesized that long-distance migrants or temperate residents would use the process of endoreduplication to aid in altering muscle size. Mostly contradictory to our hypotheses, we found no differences in the mean muscle DNA content in any of the 62 species of birds examined in this study. We also found no correlations between mean muscle DNA content and other muscle structural measurements, such as the number of nuclei per millimeter of fiber, myonuclear domain, and fiber cross-sectional area. Thus, while avian muscle seems more phenotypically plastic than mammalian muscle, the biological processes surrounding myonuclear function may be more closely related to those seen in mammals.
期刊介绍:
Genome is a monthly journal, established in 1959, that publishes original research articles, reviews, mini-reviews, current opinions, and commentaries. Areas of interest include general genetics and genomics, cytogenetics, molecular and evolutionary genetics, developmental genetics, population genetics, phylogenomics, molecular identification, as well as emerging areas such as ecological, comparative, and functional genomics.