{"title":"计时的一种生物物理计数机制。","authors":"Klavdia Zemlianova, Amitabha Bose, John Rinzel","doi":"10.1007/s00422-021-00915-4","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to estimate and produce appropriately timed responses is central to many behaviors including speaking, dancing, and playing a musical instrument. A classical framework for estimating or producing a time interval is the pacemaker-accumulator model in which pulses of a pacemaker are counted and compared to a stored representation. However, the neural mechanisms for how these pulses are counted remain an open question. The presence of noise and stochasticity further complicates the picture. We present a biophysical model of how to keep count of a pacemaker in the presence of various forms of stochasticity using a system of bistable Wilson-Cowan units asymmetrically connected in a one-dimensional array; all units receive the same input pulses from a central clock but only one unit is active at any point in time. With each pulse from the clock, the position of the activated unit changes thereby encoding the total number of pulses emitted by the clock. This neural architecture maps the counting problem into the spatial domain, which in turn translates count to a time estimate. We further extend the model to a hierarchical structure to be able to robustly achieve higher counts.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A biophysical counting mechanism for keeping time.\",\"authors\":\"Klavdia Zemlianova, Amitabha Bose, John Rinzel\",\"doi\":\"10.1007/s00422-021-00915-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ability to estimate and produce appropriately timed responses is central to many behaviors including speaking, dancing, and playing a musical instrument. A classical framework for estimating or producing a time interval is the pacemaker-accumulator model in which pulses of a pacemaker are counted and compared to a stored representation. However, the neural mechanisms for how these pulses are counted remain an open question. The presence of noise and stochasticity further complicates the picture. We present a biophysical model of how to keep count of a pacemaker in the presence of various forms of stochasticity using a system of bistable Wilson-Cowan units asymmetrically connected in a one-dimensional array; all units receive the same input pulses from a central clock but only one unit is active at any point in time. With each pulse from the clock, the position of the activated unit changes thereby encoding the total number of pulses emitted by the clock. This neural architecture maps the counting problem into the spatial domain, which in turn translates count to a time estimate. We further extend the model to a hierarchical structure to be able to robustly achieve higher counts.</p>\",\"PeriodicalId\":55374,\"journal\":{\"name\":\"Biological Cybernetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Cybernetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00422-021-00915-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-021-00915-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
A biophysical counting mechanism for keeping time.
The ability to estimate and produce appropriately timed responses is central to many behaviors including speaking, dancing, and playing a musical instrument. A classical framework for estimating or producing a time interval is the pacemaker-accumulator model in which pulses of a pacemaker are counted and compared to a stored representation. However, the neural mechanisms for how these pulses are counted remain an open question. The presence of noise and stochasticity further complicates the picture. We present a biophysical model of how to keep count of a pacemaker in the presence of various forms of stochasticity using a system of bistable Wilson-Cowan units asymmetrically connected in a one-dimensional array; all units receive the same input pulses from a central clock but only one unit is active at any point in time. With each pulse from the clock, the position of the activated unit changes thereby encoding the total number of pulses emitted by the clock. This neural architecture maps the counting problem into the spatial domain, which in turn translates count to a time estimate. We further extend the model to a hierarchical structure to be able to robustly achieve higher counts.
期刊介绍:
Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.