{"title":"二氧化钛中间层对Ti-6Al-4V基板溶胶-凝胶型HA涂层划伤及耐蚀性能的影响","authors":"Rezvan Azari, Hamid Reza Rezaie, Alireza Khavandi","doi":"10.1007/s40204-021-00169-0","DOIUrl":null,"url":null,"abstract":"<p><p>Modification of dental and orthopedic implants' surface by coating them with bioactive materials, such as hydroxyapatite (HA), diminishes the implants' fixation time. Appropriate adhesion to the substrate and stability in biological conditions are essential requirements for these coatings. In this study, sol-gel-derived HA coating was applied on the Ti-6Al-4 V substrate, which is a high-performance alloy for manufacturing bone implants. Also, titanium dioxide (TiO<sub>2</sub>) which was prepared by the sol-gel method was used as an intermediate layer between HA coating and the substrate. The nano-scratch and potentiodynamic polarization tests were employed to evaluate the effectiveness of TiO<sub>2</sub> intermediate layer on improving the scratch resistance, as an indicator of coating adhesion strength, and the corrosion resistance of the coated samples. The quality of the coating bonded to the substrate was studied by cross-sectional SEM images. The XRD tests indicated that HA and TiO<sub>2</sub> coatings were formed with predetermined phase compositions. The biocompatibility of sol-gel-derived HA coating was established by simulated body fluid (SBF) immersion tests. The SEM images, along with the results of electrochemical and nano-scratch tests, proved the significant effect of a TiO<sub>2</sub> intermediate layer on improving the scratch resistance and stability of HA coating on titanium alloy substrate.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633272/pdf/40204_2021_Article_169.pdf","citationCount":"8","resultStr":"{\"title\":\"Effect of titanium dioxide intermediate layer on scratch and corrosion resistance of sol-gel-derived HA coating applied on Ti-6Al-4V substrate.\",\"authors\":\"Rezvan Azari, Hamid Reza Rezaie, Alireza Khavandi\",\"doi\":\"10.1007/s40204-021-00169-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Modification of dental and orthopedic implants' surface by coating them with bioactive materials, such as hydroxyapatite (HA), diminishes the implants' fixation time. Appropriate adhesion to the substrate and stability in biological conditions are essential requirements for these coatings. In this study, sol-gel-derived HA coating was applied on the Ti-6Al-4 V substrate, which is a high-performance alloy for manufacturing bone implants. Also, titanium dioxide (TiO<sub>2</sub>) which was prepared by the sol-gel method was used as an intermediate layer between HA coating and the substrate. The nano-scratch and potentiodynamic polarization tests were employed to evaluate the effectiveness of TiO<sub>2</sub> intermediate layer on improving the scratch resistance, as an indicator of coating adhesion strength, and the corrosion resistance of the coated samples. The quality of the coating bonded to the substrate was studied by cross-sectional SEM images. The XRD tests indicated that HA and TiO<sub>2</sub> coatings were formed with predetermined phase compositions. The biocompatibility of sol-gel-derived HA coating was established by simulated body fluid (SBF) immersion tests. The SEM images, along with the results of electrochemical and nano-scratch tests, proved the significant effect of a TiO<sub>2</sub> intermediate layer on improving the scratch resistance and stability of HA coating on titanium alloy substrate.</p>\",\"PeriodicalId\":20691,\"journal\":{\"name\":\"Progress in Biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633272/pdf/40204_2021_Article_169.pdf\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40204-021-00169-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/11/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-021-00169-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Effect of titanium dioxide intermediate layer on scratch and corrosion resistance of sol-gel-derived HA coating applied on Ti-6Al-4V substrate.
Modification of dental and orthopedic implants' surface by coating them with bioactive materials, such as hydroxyapatite (HA), diminishes the implants' fixation time. Appropriate adhesion to the substrate and stability in biological conditions are essential requirements for these coatings. In this study, sol-gel-derived HA coating was applied on the Ti-6Al-4 V substrate, which is a high-performance alloy for manufacturing bone implants. Also, titanium dioxide (TiO2) which was prepared by the sol-gel method was used as an intermediate layer between HA coating and the substrate. The nano-scratch and potentiodynamic polarization tests were employed to evaluate the effectiveness of TiO2 intermediate layer on improving the scratch resistance, as an indicator of coating adhesion strength, and the corrosion resistance of the coated samples. The quality of the coating bonded to the substrate was studied by cross-sectional SEM images. The XRD tests indicated that HA and TiO2 coatings were formed with predetermined phase compositions. The biocompatibility of sol-gel-derived HA coating was established by simulated body fluid (SBF) immersion tests. The SEM images, along with the results of electrochemical and nano-scratch tests, proved the significant effect of a TiO2 intermediate layer on improving the scratch resistance and stability of HA coating on titanium alloy substrate.
期刊介绍:
Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.