{"title":"盐介导的有机溶剂沉淀法提高胃蛋白酶消化产生肽的回收率。","authors":"Venus Baghalabadi, Habib Razmi, Alan Doucette","doi":"10.3390/proteomes9040044","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional solvent-based precipitation makes it challenging to obtain a high recovery of low mass peptides. However, we previously demonstrated that the inclusion of salt ions, specifically ZnSO<sub>4</sub>, together with high concentrations of acetone, maximizes the recovery of peptides generated from trypsin digestion. We herein generalized this protocol to the rapid (5 min) precipitation of pepsin-digested peptides recovered from acidic matrices. The precipitation protocol extended to other organic solvents (acetonitrile), with high recovery from dilute peptide samples permitting preconcentration and purification. Mass spectrometry profiling of pepsin-generated peptides demonstrated that the protocol captured peptides as small as 800 u, although with a preferential bias towards recovering larger and more hydrophobic peptides. The precipitation protocol was applied to rapidly quench, concentrate, and purify pepsin-digested samples ahead of MS. Complex mixtures of yeast and plasma proteome extracts were successfully precipitated following digestion, with over 95% of MS-identified peptides observed in the pellet fraction. The full precipitation workflow-including the digestion step-can be completed in under 10 min, with direct MS analysis of the recovered peptide pellets showing exceptional protein sequence coverage.</p>","PeriodicalId":20877,"journal":{"name":"Proteomes","volume":"9 4","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8628918/pdf/","citationCount":"4","resultStr":"{\"title\":\"Salt-Mediated Organic Solvent Precipitation for Enhanced Recovery of Peptides Generated by Pepsin Digestion.\",\"authors\":\"Venus Baghalabadi, Habib Razmi, Alan Doucette\",\"doi\":\"10.3390/proteomes9040044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conventional solvent-based precipitation makes it challenging to obtain a high recovery of low mass peptides. However, we previously demonstrated that the inclusion of salt ions, specifically ZnSO<sub>4</sub>, together with high concentrations of acetone, maximizes the recovery of peptides generated from trypsin digestion. We herein generalized this protocol to the rapid (5 min) precipitation of pepsin-digested peptides recovered from acidic matrices. The precipitation protocol extended to other organic solvents (acetonitrile), with high recovery from dilute peptide samples permitting preconcentration and purification. Mass spectrometry profiling of pepsin-generated peptides demonstrated that the protocol captured peptides as small as 800 u, although with a preferential bias towards recovering larger and more hydrophobic peptides. The precipitation protocol was applied to rapidly quench, concentrate, and purify pepsin-digested samples ahead of MS. Complex mixtures of yeast and plasma proteome extracts were successfully precipitated following digestion, with over 95% of MS-identified peptides observed in the pellet fraction. The full precipitation workflow-including the digestion step-can be completed in under 10 min, with direct MS analysis of the recovered peptide pellets showing exceptional protein sequence coverage.</p>\",\"PeriodicalId\":20877,\"journal\":{\"name\":\"Proteomes\",\"volume\":\"9 4\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2021-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8628918/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteomes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/proteomes9040044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/proteomes9040044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Salt-Mediated Organic Solvent Precipitation for Enhanced Recovery of Peptides Generated by Pepsin Digestion.
Conventional solvent-based precipitation makes it challenging to obtain a high recovery of low mass peptides. However, we previously demonstrated that the inclusion of salt ions, specifically ZnSO4, together with high concentrations of acetone, maximizes the recovery of peptides generated from trypsin digestion. We herein generalized this protocol to the rapid (5 min) precipitation of pepsin-digested peptides recovered from acidic matrices. The precipitation protocol extended to other organic solvents (acetonitrile), with high recovery from dilute peptide samples permitting preconcentration and purification. Mass spectrometry profiling of pepsin-generated peptides demonstrated that the protocol captured peptides as small as 800 u, although with a preferential bias towards recovering larger and more hydrophobic peptides. The precipitation protocol was applied to rapidly quench, concentrate, and purify pepsin-digested samples ahead of MS. Complex mixtures of yeast and plasma proteome extracts were successfully precipitated following digestion, with over 95% of MS-identified peptides observed in the pellet fraction. The full precipitation workflow-including the digestion step-can be completed in under 10 min, with direct MS analysis of the recovered peptide pellets showing exceptional protein sequence coverage.
ProteomesBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.50
自引率
3.00%
发文量
37
审稿时长
11 weeks
期刊介绍:
Proteomes (ISSN 2227-7382) is an open access, peer reviewed journal on all aspects of proteome science. Proteomes covers the multi-disciplinary topics of structural and functional biology, protein chemistry, cell biology, methodology used for protein analysis, including mass spectrometry, protein arrays, bioinformatics, HTS assays, etc. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers. Scope: -whole proteome analysis of any organism -disease/pharmaceutical studies -comparative proteomics -protein-ligand/protein interactions -structure/functional proteomics -gene expression -methodology -bioinformatics -applications of proteomics