Rouya Ebrahimi, Mohammad Shokrzadeh, Nasrin Ghassemi Barghi
{"title":"褪黑素对结肠癌细胞系、正常牙龈细胞系和骨髓干细胞双酚a诱导的细胞毒性和遗传毒性的影响。","authors":"Rouya Ebrahimi, Mohammad Shokrzadeh, Nasrin Ghassemi Barghi","doi":"10.1177/11769351211056295","DOIUrl":null,"url":null,"abstract":"<p><p>Bisphenol-A (BPA) is a synthetic chemical that has widely been used in the production of polycarbonate plastic and epoxy resins in the manufacture of consumer products. The most common path of human exposure to BPA is by oral intake that involves genotoxicity, oxidative stress, endocrine disruption, mutagenicity, and carcinogenicity in both <i>in vitro</i> and <i>in vivo</i> models. Melatonin is known as a free-radical scavenger and a powerful antioxidant agent. This study aimed to investigate the effects of melatonin on viability and genetic disorders of normal Human Gingival Fibroblasts (HGF), colon cancer (MKN45), and bone marrow stem cell (MSC) lines exposed to BPA. For this purpose, MTT and Comet assays were performed to evaluate the cytotoxicity and genotoxicity properties of BPA and the role of melatonin. The results showed that BPA exposure resulted in increased oxidative stress parameters including MDA and ROS, and decreased GSH content. The current study demonstrated the cytotoxicity and genotoxicity effects of BPA and the protective role of melatonin in preventing cytotoxicity and DNA damage are induced by BPA.</p>","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f1/5b/10.1177_11769351211056295.PMC8606939.pdf","citationCount":"4","resultStr":"{\"title\":\"Effects of melatonin on the Bisphenol-A- induced cytotoxicity and genetic toxicity in colon cancer cell lines, normal gingival cell lines, and bone marrow stem cell lines.\",\"authors\":\"Rouya Ebrahimi, Mohammad Shokrzadeh, Nasrin Ghassemi Barghi\",\"doi\":\"10.1177/11769351211056295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bisphenol-A (BPA) is a synthetic chemical that has widely been used in the production of polycarbonate plastic and epoxy resins in the manufacture of consumer products. The most common path of human exposure to BPA is by oral intake that involves genotoxicity, oxidative stress, endocrine disruption, mutagenicity, and carcinogenicity in both <i>in vitro</i> and <i>in vivo</i> models. Melatonin is known as a free-radical scavenger and a powerful antioxidant agent. This study aimed to investigate the effects of melatonin on viability and genetic disorders of normal Human Gingival Fibroblasts (HGF), colon cancer (MKN45), and bone marrow stem cell (MSC) lines exposed to BPA. For this purpose, MTT and Comet assays were performed to evaluate the cytotoxicity and genotoxicity properties of BPA and the role of melatonin. The results showed that BPA exposure resulted in increased oxidative stress parameters including MDA and ROS, and decreased GSH content. The current study demonstrated the cytotoxicity and genotoxicity effects of BPA and the protective role of melatonin in preventing cytotoxicity and DNA damage are induced by BPA.</p>\",\"PeriodicalId\":35418,\"journal\":{\"name\":\"Cancer Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f1/5b/10.1177_11769351211056295.PMC8606939.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11769351211056295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11769351211056295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Effects of melatonin on the Bisphenol-A- induced cytotoxicity and genetic toxicity in colon cancer cell lines, normal gingival cell lines, and bone marrow stem cell lines.
Bisphenol-A (BPA) is a synthetic chemical that has widely been used in the production of polycarbonate plastic and epoxy resins in the manufacture of consumer products. The most common path of human exposure to BPA is by oral intake that involves genotoxicity, oxidative stress, endocrine disruption, mutagenicity, and carcinogenicity in both in vitro and in vivo models. Melatonin is known as a free-radical scavenger and a powerful antioxidant agent. This study aimed to investigate the effects of melatonin on viability and genetic disorders of normal Human Gingival Fibroblasts (HGF), colon cancer (MKN45), and bone marrow stem cell (MSC) lines exposed to BPA. For this purpose, MTT and Comet assays were performed to evaluate the cytotoxicity and genotoxicity properties of BPA and the role of melatonin. The results showed that BPA exposure resulted in increased oxidative stress parameters including MDA and ROS, and decreased GSH content. The current study demonstrated the cytotoxicity and genotoxicity effects of BPA and the protective role of melatonin in preventing cytotoxicity and DNA damage are induced by BPA.
期刊介绍:
The field of cancer research relies on advances in many other disciplines, including omics technology, mass spectrometry, radio imaging, computer science, and biostatistics. Cancer Informatics provides open access to peer-reviewed high-quality manuscripts reporting bioinformatics analysis of molecular genetics and/or clinical data pertaining to cancer, emphasizing the use of machine learning, artificial intelligence, statistical algorithms, advanced imaging techniques, data visualization, and high-throughput technologies. As the leading journal dedicated exclusively to the report of the use of computational methods in cancer research and practice, Cancer Informatics leverages methodological improvements in systems biology, genomics, proteomics, metabolomics, and molecular biochemistry into the fields of cancer detection, treatment, classification, risk-prediction, prevention, outcome, and modeling.